Entanglement and Gaussian Interference Power in the Dynamical Casimir Effect

We study the dissipative evolution of quantum entanglement and Gaussian interference power in the dynamical Casimir radiation generated in a superconducting waveguide. We consider the decoherence in the current experimental studies, which are in the low temperature. We observe that lower temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics 2020-11, Vol.59 (11), p.3574-3582
Hauptverfasser: Long, Yumei, Zhang, Xue, Zheng, TaiYu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3582
container_issue 11
container_start_page 3574
container_title International journal of theoretical physics
container_volume 59
creator Long, Yumei
Zhang, Xue
Zheng, TaiYu
description We study the dissipative evolution of quantum entanglement and Gaussian interference power in the dynamical Casimir radiation generated in a superconducting waveguide. We consider the decoherence in the current experimental studies, which are in the low temperature. We observe that lower temperature, smaller detuning and larger normalized amplitude can not only maintain the non-classical association of the system more effectively, but also increase the utilization of quantum resources. Moreover, most of the damping is placed on the second noise channel, the entanglement and Gaussian interference power maintain longer and better quality, and they are also more sensitive to other environmental parameters. In addition, the Gaussian interference power is always non-zero, which displays its robustness to the thermal noise and the dissipation.
doi_str_mv 10.1007/s10773-020-04617-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473790187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473790187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d074ec0dc00d5fd7951ccc6dbe61b222ee9151d8566c43eca3763e029d8dde6c3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gsMQfOdpxLRlRKqVQJBpgt176UVI1T7FSo_55AkNiYbnjveyd9jF0LuBUAeJcEIKoMJGSQFwKz8oRNhEaZVRr1KZvAd4SYl-fsIqUtAFSQlxO2mofehs2OWgo9t8HzhT2k1NjAl6GnWFOk4Ii_dJ8UeRN4_0784Rhs2zi74zObmraJfF7X5PpLdlbbXaKr3ztlb4_z19lTtnpeLGf3q8xJhD7zgDk58A7A69pjpYVzrvBrKsRaSklUCS18qYvC5YqcVVgoAln50nsqnJqym3F3H7uPA6XebLtDDMNLI3NUWIEocWjJseVil1Kk2uxj09p4NALMtzUzWjODGvNjzZQDpEYoDeWwofg3_Q_1BRcAb8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473790187</pqid></control><display><type>article</type><title>Entanglement and Gaussian Interference Power in the Dynamical Casimir Effect</title><source>Springer Nature - Complete Springer Journals</source><creator>Long, Yumei ; Zhang, Xue ; Zheng, TaiYu</creator><creatorcontrib>Long, Yumei ; Zhang, Xue ; Zheng, TaiYu</creatorcontrib><description>We study the dissipative evolution of quantum entanglement and Gaussian interference power in the dynamical Casimir radiation generated in a superconducting waveguide. We consider the decoherence in the current experimental studies, which are in the low temperature. We observe that lower temperature, smaller detuning and larger normalized amplitude can not only maintain the non-classical association of the system more effectively, but also increase the utilization of quantum resources. Moreover, most of the damping is placed on the second noise channel, the entanglement and Gaussian interference power maintain longer and better quality, and they are also more sensitive to other environmental parameters. In addition, the Gaussian interference power is always non-zero, which displays its robustness to the thermal noise and the dissipation.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-020-04617-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Damping ; Elementary Particles ; Interference ; Low temperature ; Mathematical and Computational Physics ; Parameter sensitivity ; Physics ; Physics and Astronomy ; Quantum entanglement ; Quantum Field Theory ; Quantum mechanics ; Quantum Physics ; Quantum theory ; Theoretical ; Thermal noise ; Waveguides</subject><ispartof>International journal of theoretical physics, 2020-11, Vol.59 (11), p.3574-3582</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d074ec0dc00d5fd7951ccc6dbe61b222ee9151d8566c43eca3763e029d8dde6c3</cites><orcidid>0000-0002-4307-0776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10773-020-04617-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10773-020-04617-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Long, Yumei</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Zheng, TaiYu</creatorcontrib><title>Entanglement and Gaussian Interference Power in the Dynamical Casimir Effect</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>We study the dissipative evolution of quantum entanglement and Gaussian interference power in the dynamical Casimir radiation generated in a superconducting waveguide. We consider the decoherence in the current experimental studies, which are in the low temperature. We observe that lower temperature, smaller detuning and larger normalized amplitude can not only maintain the non-classical association of the system more effectively, but also increase the utilization of quantum resources. Moreover, most of the damping is placed on the second noise channel, the entanglement and Gaussian interference power maintain longer and better quality, and they are also more sensitive to other environmental parameters. In addition, the Gaussian interference power is always non-zero, which displays its robustness to the thermal noise and the dissipation.</description><subject>Damping</subject><subject>Elementary Particles</subject><subject>Interference</subject><subject>Low temperature</subject><subject>Mathematical and Computational Physics</subject><subject>Parameter sensitivity</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum entanglement</subject><subject>Quantum Field Theory</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Quantum theory</subject><subject>Theoretical</subject><subject>Thermal noise</subject><subject>Waveguides</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5gsMQfOdpxLRlRKqVQJBpgt176UVI1T7FSo_55AkNiYbnjveyd9jF0LuBUAeJcEIKoMJGSQFwKz8oRNhEaZVRr1KZvAd4SYl-fsIqUtAFSQlxO2mofehs2OWgo9t8HzhT2k1NjAl6GnWFOk4Ii_dJ8UeRN4_0784Rhs2zi74zObmraJfF7X5PpLdlbbXaKr3ztlb4_z19lTtnpeLGf3q8xJhD7zgDk58A7A69pjpYVzrvBrKsRaSklUCS18qYvC5YqcVVgoAln50nsqnJqym3F3H7uPA6XebLtDDMNLI3NUWIEocWjJseVil1Kk2uxj09p4NALMtzUzWjODGvNjzZQDpEYoDeWwofg3_Q_1BRcAb8g</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Long, Yumei</creator><creator>Zhang, Xue</creator><creator>Zheng, TaiYu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4307-0776</orcidid></search><sort><creationdate>20201101</creationdate><title>Entanglement and Gaussian Interference Power in the Dynamical Casimir Effect</title><author>Long, Yumei ; Zhang, Xue ; Zheng, TaiYu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d074ec0dc00d5fd7951ccc6dbe61b222ee9151d8566c43eca3763e029d8dde6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Damping</topic><topic>Elementary Particles</topic><topic>Interference</topic><topic>Low temperature</topic><topic>Mathematical and Computational Physics</topic><topic>Parameter sensitivity</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum entanglement</topic><topic>Quantum Field Theory</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Quantum theory</topic><topic>Theoretical</topic><topic>Thermal noise</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Yumei</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Zheng, TaiYu</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Yumei</au><au>Zhang, Xue</au><au>Zheng, TaiYu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entanglement and Gaussian Interference Power in the Dynamical Casimir Effect</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>59</volume><issue>11</issue><spage>3574</spage><epage>3582</epage><pages>3574-3582</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>We study the dissipative evolution of quantum entanglement and Gaussian interference power in the dynamical Casimir radiation generated in a superconducting waveguide. We consider the decoherence in the current experimental studies, which are in the low temperature. We observe that lower temperature, smaller detuning and larger normalized amplitude can not only maintain the non-classical association of the system more effectively, but also increase the utilization of quantum resources. Moreover, most of the damping is placed on the second noise channel, the entanglement and Gaussian interference power maintain longer and better quality, and they are also more sensitive to other environmental parameters. In addition, the Gaussian interference power is always non-zero, which displays its robustness to the thermal noise and the dissipation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-020-04617-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4307-0776</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7748
ispartof International journal of theoretical physics, 2020-11, Vol.59 (11), p.3574-3582
issn 0020-7748
1572-9575
language eng
recordid cdi_proquest_journals_2473790187
source Springer Nature - Complete Springer Journals
subjects Damping
Elementary Particles
Interference
Low temperature
Mathematical and Computational Physics
Parameter sensitivity
Physics
Physics and Astronomy
Quantum entanglement
Quantum Field Theory
Quantum mechanics
Quantum Physics
Quantum theory
Theoretical
Thermal noise
Waveguides
title Entanglement and Gaussian Interference Power in the Dynamical Casimir Effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entanglement%20and%20Gaussian%20Interference%20Power%20in%20the%20Dynamical%20Casimir%20Effect&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Long,%20Yumei&rft.date=2020-11-01&rft.volume=59&rft.issue=11&rft.spage=3574&rft.epage=3582&rft.pages=3574-3582&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-020-04617-8&rft_dat=%3Cproquest_cross%3E2473790187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473790187&rft_id=info:pmid/&rfr_iscdi=true