A multi-agent-based algorithm for data clustering

Clustering algorithms aim to detect groups based on similarity, from a given set of objects. Many clustering techniques have been proposed, most requiring the user to set critical parameters, such as the number of groups. This work presents the implementation and evaluation of a clustering algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in artificial intelligence 2020-12, Vol.9 (4), p.305-313
Hauptverfasser: Godois, Lutiele M., Adamatti, Diana F., Emmendorfer, Leonardo R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 313
container_issue 4
container_start_page 305
container_title Progress in artificial intelligence
container_volume 9
creator Godois, Lutiele M.
Adamatti, Diana F.
Emmendorfer, Leonardo R.
description Clustering algorithms aim to detect groups based on similarity, from a given set of objects. Many clustering techniques have been proposed, most requiring the user to set critical parameters, such as the number of groups. This work presents the implementation and evaluation of a clustering algorithm based on a multi-agent system, which automatically detects the number of groups and the group labels for a given dataset. Groups formed during the clustering process emerge as patterns from the interaction among agents. The proposed algorithm is experimentally validated over benchmark datasets from the literature. The quality of clustering results is computed using seven internal indexes and one external index. Under this methodology, the proposed algorithm is compared to K-means and DBSCAN (density-based spatial clustering of applications with noise).
doi_str_mv 10.1007/s13748-020-00213-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473790113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473790113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4e01e3ffb0315f068c5e6a057f966b7c379140fee003c7c8c410c68afd942bec3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpH2CKxGy4sx07GauKL6kSC8yW49ghVdIU2xn49yQEwcZ0N7zPfTyEXCPcIoC6i8iVKCgwoAAMOeVnZMWwZFRyCee_fc4uySbGA8wpAcjFiuA268cutdQ07phoZaKrM9M1Q2jTe5_5IWS1SSaz3RiTC-2xuSIX3nTRbX7qmrw93L_unuj-5fF5t91Ty7FMVDhAx72vgGPuQRY2d9JArnwpZaUsV-V0g3cOgFtlCysQrCyMr0vBKmf5mtwsc09h-BhdTPowjOE4rdRMqAkHRD6l2JKyYYgxOK9Poe1N-NQIerajFzt6sqO_7egZ4gsUT_NHLvyN_of6AuwHZb0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473790113</pqid></control><display><type>article</type><title>A multi-agent-based algorithm for data clustering</title><source>SpringerLink Journals - AutoHoldings</source><creator>Godois, Lutiele M. ; Adamatti, Diana F. ; Emmendorfer, Leonardo R.</creator><creatorcontrib>Godois, Lutiele M. ; Adamatti, Diana F. ; Emmendorfer, Leonardo R.</creatorcontrib><description>Clustering algorithms aim to detect groups based on similarity, from a given set of objects. Many clustering techniques have been proposed, most requiring the user to set critical parameters, such as the number of groups. This work presents the implementation and evaluation of a clustering algorithm based on a multi-agent system, which automatically detects the number of groups and the group labels for a given dataset. Groups formed during the clustering process emerge as patterns from the interaction among agents. The proposed algorithm is experimentally validated over benchmark datasets from the literature. The quality of clustering results is computed using seven internal indexes and one external index. Under this methodology, the proposed algorithm is compared to K-means and DBSCAN (density-based spatial clustering of applications with noise).</description><identifier>ISSN: 2192-6352</identifier><identifier>EISSN: 2192-6360</identifier><identifier>DOI: 10.1007/s13748-020-00213-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Clustering ; Computational Intelligence ; Computer Imaging ; Computer Science ; Control ; Data Mining and Knowledge Discovery ; Datasets ; Mechatronics ; Multiagent systems ; Natural Language Processing (NLP) ; Object recognition ; Pattern Recognition and Graphics ; Regular Paper ; Robotics ; Vision</subject><ispartof>Progress in artificial intelligence, 2020-12, Vol.9 (4), p.305-313</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4e01e3ffb0315f068c5e6a057f966b7c379140fee003c7c8c410c68afd942bec3</citedby><cites>FETCH-LOGICAL-c319t-4e01e3ffb0315f068c5e6a057f966b7c379140fee003c7c8c410c68afd942bec3</cites><orcidid>0000-0003-3829-3075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13748-020-00213-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13748-020-00213-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Godois, Lutiele M.</creatorcontrib><creatorcontrib>Adamatti, Diana F.</creatorcontrib><creatorcontrib>Emmendorfer, Leonardo R.</creatorcontrib><title>A multi-agent-based algorithm for data clustering</title><title>Progress in artificial intelligence</title><addtitle>Prog Artif Intell</addtitle><description>Clustering algorithms aim to detect groups based on similarity, from a given set of objects. Many clustering techniques have been proposed, most requiring the user to set critical parameters, such as the number of groups. This work presents the implementation and evaluation of a clustering algorithm based on a multi-agent system, which automatically detects the number of groups and the group labels for a given dataset. Groups formed during the clustering process emerge as patterns from the interaction among agents. The proposed algorithm is experimentally validated over benchmark datasets from the literature. The quality of clustering results is computed using seven internal indexes and one external index. Under this methodology, the proposed algorithm is compared to K-means and DBSCAN (density-based spatial clustering of applications with noise).</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Clustering</subject><subject>Computational Intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Control</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Mechatronics</subject><subject>Multiagent systems</subject><subject>Natural Language Processing (NLP)</subject><subject>Object recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Vision</subject><issn>2192-6352</issn><issn>2192-6360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EElXpH2CKxGy4sx07GauKL6kSC8yW49ghVdIU2xn49yQEwcZ0N7zPfTyEXCPcIoC6i8iVKCgwoAAMOeVnZMWwZFRyCee_fc4uySbGA8wpAcjFiuA268cutdQ07phoZaKrM9M1Q2jTe5_5IWS1SSaz3RiTC-2xuSIX3nTRbX7qmrw93L_unuj-5fF5t91Ty7FMVDhAx72vgGPuQRY2d9JArnwpZaUsV-V0g3cOgFtlCysQrCyMr0vBKmf5mtwsc09h-BhdTPowjOE4rdRMqAkHRD6l2JKyYYgxOK9Poe1N-NQIerajFzt6sqO_7egZ4gsUT_NHLvyN_of6AuwHZb0</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Godois, Lutiele M.</creator><creator>Adamatti, Diana F.</creator><creator>Emmendorfer, Leonardo R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3829-3075</orcidid></search><sort><creationdate>20201201</creationdate><title>A multi-agent-based algorithm for data clustering</title><author>Godois, Lutiele M. ; Adamatti, Diana F. ; Emmendorfer, Leonardo R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4e01e3ffb0315f068c5e6a057f966b7c379140fee003c7c8c410c68afd942bec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Clustering</topic><topic>Computational Intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Control</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Mechatronics</topic><topic>Multiagent systems</topic><topic>Natural Language Processing (NLP)</topic><topic>Object recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godois, Lutiele M.</creatorcontrib><creatorcontrib>Adamatti, Diana F.</creatorcontrib><creatorcontrib>Emmendorfer, Leonardo R.</creatorcontrib><collection>CrossRef</collection><jtitle>Progress in artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godois, Lutiele M.</au><au>Adamatti, Diana F.</au><au>Emmendorfer, Leonardo R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-agent-based algorithm for data clustering</atitle><jtitle>Progress in artificial intelligence</jtitle><stitle>Prog Artif Intell</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>9</volume><issue>4</issue><spage>305</spage><epage>313</epage><pages>305-313</pages><issn>2192-6352</issn><eissn>2192-6360</eissn><abstract>Clustering algorithms aim to detect groups based on similarity, from a given set of objects. Many clustering techniques have been proposed, most requiring the user to set critical parameters, such as the number of groups. This work presents the implementation and evaluation of a clustering algorithm based on a multi-agent system, which automatically detects the number of groups and the group labels for a given dataset. Groups formed during the clustering process emerge as patterns from the interaction among agents. The proposed algorithm is experimentally validated over benchmark datasets from the literature. The quality of clustering results is computed using seven internal indexes and one external index. Under this methodology, the proposed algorithm is compared to K-means and DBSCAN (density-based spatial clustering of applications with noise).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13748-020-00213-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3829-3075</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2192-6352
ispartof Progress in artificial intelligence, 2020-12, Vol.9 (4), p.305-313
issn 2192-6352
2192-6360
language eng
recordid cdi_proquest_journals_2473790113
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Clustering
Computational Intelligence
Computer Imaging
Computer Science
Control
Data Mining and Knowledge Discovery
Datasets
Mechatronics
Multiagent systems
Natural Language Processing (NLP)
Object recognition
Pattern Recognition and Graphics
Regular Paper
Robotics
Vision
title A multi-agent-based algorithm for data clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-agent-based%20algorithm%20for%20data%20clustering&rft.jtitle=Progress%20in%20artificial%20intelligence&rft.au=Godois,%20Lutiele%20M.&rft.date=2020-12-01&rft.volume=9&rft.issue=4&rft.spage=305&rft.epage=313&rft.pages=305-313&rft.issn=2192-6352&rft.eissn=2192-6360&rft_id=info:doi/10.1007/s13748-020-00213-3&rft_dat=%3Cproquest_cross%3E2473790113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473790113&rft_id=info:pmid/&rfr_iscdi=true