An Insight into the Coating Behavior of Bimetallic Silver and Gold Core-Shell Nanoparticles

Bimetallic Ag (core) /Au (shell) and Au (core) /Ag (shell) core-shell nanoparticles are synthesized in aqueous phase using simple citrate reduction method with variations for both sets in the reaction conditions during the fabrication of shell structure, i.e., change in salt concentration, temperatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasmonics (Norwell, Mass.) Mass.), 2020-12, Vol.15 (6), p.1599-1612
Hauptverfasser: Mohsin, Muhammad, Jawad, Muhammad, Yameen, Muhammad Arfat, Waseem, Amir, Shah, Sajid Hussain, Shaikh, Ahson Jabbar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1612
container_issue 6
container_start_page 1599
container_title Plasmonics (Norwell, Mass.)
container_volume 15
creator Mohsin, Muhammad
Jawad, Muhammad
Yameen, Muhammad Arfat
Waseem, Amir
Shah, Sajid Hussain
Shaikh, Ahson Jabbar
description Bimetallic Ag (core) /Au (shell) and Au (core) /Ag (shell) core-shell nanoparticles are synthesized in aqueous phase using simple citrate reduction method with variations for both sets in the reaction conditions during the fabrication of shell structure, i.e., change in salt concentration, temperature (from 25 to 100 °C), and pH for salt solutions (from 2 to 12). The surface plasmon resonance effect, size and morphology, elemental composition, crystalline structure, and crystallite size were observed for these bimetallic core-shell nanoparticles using techniques such as UV-Vis spectroscopy, SEM, EDX, and XRD respectively. The size observed for Ag (core) /Au (shell) nanoparticles was 50 ± 6 nm, and Au (core) /Ag (shell) nanoparticles was 64 ± 8 nm. Increasing the concentration of salt for Au or Ag shows better coating and increase in shell thickness as observed by surface plasmon resonance (SPR) peaks. At lower temperatures, generally, agglomeration occurs or in case of Au (core) /Ag (shell) nanoparticles, formation of Ag 3 O 4 occurs; however, at higher temperatures, homogenous small-sized nanoparticles with higher crystallinity are formed. For Ag (core) /Au (shell) nanoparticles, at pH 4, best uniformly distributed nanoparticles are formed with higher crystallinity; however for Au (core) /Ag (shell) nanoparticles, pH 7 is the optimal pH, where uniformly sized nanoparticles with higher crystalline structure are formed. Graphical Abstract
doi_str_mv 10.1007/s11468-020-01166-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473789954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473789954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ac512588fc729330c45ad78bc16ee197398b2a38011c90a58996ab2b2bbac05d3</originalsourceid><addsrcrecordid>eNp9kMFOAyEQhonRxFp9AU8knlFYYHc5to3WJo0eqicPhGXZlmYLFahJ3150jd7MHGYO3z-T-QC4JviWYFzdRUJYWSNcYIQJKUt0PAEjwnmFiCjp6e_M-Tm4iHGLMWOsZCPwNnFw4aJdbxK0LnmYNgbOvErWreHUbNSH9QH6Dk7tziTV91bDle0_TIDKtXDu-zbjwaDVxvQ9fFLO71VIVvcmXoKzTvXRXP30MXh9uH-ZPaLl83wxmyyRpkQkpDQnBa_rTleFoBRrxlVb1Y0mpTFEVFTUTaFonR_TAiteC1GqpsjVKI15S8fgZti7D_79YGKSW38ILp-UBatolQOcZaoYKB18jMF0ch_sToWjJFh-SZSDRJklym-J8phDdAjFDLu1CX-r_0l9AvJpdI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473789954</pqid></control><display><type>article</type><title>An Insight into the Coating Behavior of Bimetallic Silver and Gold Core-Shell Nanoparticles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mohsin, Muhammad ; Jawad, Muhammad ; Yameen, Muhammad Arfat ; Waseem, Amir ; Shah, Sajid Hussain ; Shaikh, Ahson Jabbar</creator><creatorcontrib>Mohsin, Muhammad ; Jawad, Muhammad ; Yameen, Muhammad Arfat ; Waseem, Amir ; Shah, Sajid Hussain ; Shaikh, Ahson Jabbar</creatorcontrib><description>Bimetallic Ag (core) /Au (shell) and Au (core) /Ag (shell) core-shell nanoparticles are synthesized in aqueous phase using simple citrate reduction method with variations for both sets in the reaction conditions during the fabrication of shell structure, i.e., change in salt concentration, temperature (from 25 to 100 °C), and pH for salt solutions (from 2 to 12). The surface plasmon resonance effect, size and morphology, elemental composition, crystalline structure, and crystallite size were observed for these bimetallic core-shell nanoparticles using techniques such as UV-Vis spectroscopy, SEM, EDX, and XRD respectively. The size observed for Ag (core) /Au (shell) nanoparticles was 50 ± 6 nm, and Au (core) /Ag (shell) nanoparticles was 64 ± 8 nm. Increasing the concentration of salt for Au or Ag shows better coating and increase in shell thickness as observed by surface plasmon resonance (SPR) peaks. At lower temperatures, generally, agglomeration occurs or in case of Au (core) /Ag (shell) nanoparticles, formation of Ag 3 O 4 occurs; however, at higher temperatures, homogenous small-sized nanoparticles with higher crystallinity are formed. For Ag (core) /Au (shell) nanoparticles, at pH 4, best uniformly distributed nanoparticles are formed with higher crystallinity; however for Au (core) /Ag (shell) nanoparticles, pH 7 is the optimal pH, where uniformly sized nanoparticles with higher crystalline structure are formed. Graphical Abstract</description><identifier>ISSN: 1557-1955</identifier><identifier>EISSN: 1557-1963</identifier><identifier>DOI: 10.1007/s11468-020-01166-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bimetals ; Biochemistry ; Biological and Medical Physics ; Biophysics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Core-shell particles ; Crystal structure ; Crystallinity ; Crystallites ; Gold ; Morphology ; Nanoparticles ; Nanotechnology ; Saline solutions ; Shells ; Shells (structural forms) ; Silver ; Surface plasmon resonance</subject><ispartof>Plasmonics (Norwell, Mass.), 2020-12, Vol.15 (6), p.1599-1612</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ac512588fc729330c45ad78bc16ee197398b2a38011c90a58996ab2b2bbac05d3</citedby><cites>FETCH-LOGICAL-c319t-ac512588fc729330c45ad78bc16ee197398b2a38011c90a58996ab2b2bbac05d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11468-020-01166-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11468-020-01166-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mohsin, Muhammad</creatorcontrib><creatorcontrib>Jawad, Muhammad</creatorcontrib><creatorcontrib>Yameen, Muhammad Arfat</creatorcontrib><creatorcontrib>Waseem, Amir</creatorcontrib><creatorcontrib>Shah, Sajid Hussain</creatorcontrib><creatorcontrib>Shaikh, Ahson Jabbar</creatorcontrib><title>An Insight into the Coating Behavior of Bimetallic Silver and Gold Core-Shell Nanoparticles</title><title>Plasmonics (Norwell, Mass.)</title><addtitle>Plasmonics</addtitle><description>Bimetallic Ag (core) /Au (shell) and Au (core) /Ag (shell) core-shell nanoparticles are synthesized in aqueous phase using simple citrate reduction method with variations for both sets in the reaction conditions during the fabrication of shell structure, i.e., change in salt concentration, temperature (from 25 to 100 °C), and pH for salt solutions (from 2 to 12). The surface plasmon resonance effect, size and morphology, elemental composition, crystalline structure, and crystallite size were observed for these bimetallic core-shell nanoparticles using techniques such as UV-Vis spectroscopy, SEM, EDX, and XRD respectively. The size observed for Ag (core) /Au (shell) nanoparticles was 50 ± 6 nm, and Au (core) /Ag (shell) nanoparticles was 64 ± 8 nm. Increasing the concentration of salt for Au or Ag shows better coating and increase in shell thickness as observed by surface plasmon resonance (SPR) peaks. At lower temperatures, generally, agglomeration occurs or in case of Au (core) /Ag (shell) nanoparticles, formation of Ag 3 O 4 occurs; however, at higher temperatures, homogenous small-sized nanoparticles with higher crystallinity are formed. For Ag (core) /Au (shell) nanoparticles, at pH 4, best uniformly distributed nanoparticles are formed with higher crystallinity; however for Au (core) /Ag (shell) nanoparticles, pH 7 is the optimal pH, where uniformly sized nanoparticles with higher crystalline structure are formed. Graphical Abstract</description><subject>Bimetals</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Core-shell particles</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>Gold</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Saline solutions</subject><subject>Shells</subject><subject>Shells (structural forms)</subject><subject>Silver</subject><subject>Surface plasmon resonance</subject><issn>1557-1955</issn><issn>1557-1963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAyEQhonRxFp9AU8knlFYYHc5to3WJo0eqicPhGXZlmYLFahJ3150jd7MHGYO3z-T-QC4JviWYFzdRUJYWSNcYIQJKUt0PAEjwnmFiCjp6e_M-Tm4iHGLMWOsZCPwNnFw4aJdbxK0LnmYNgbOvErWreHUbNSH9QH6Dk7tziTV91bDle0_TIDKtXDu-zbjwaDVxvQ9fFLO71VIVvcmXoKzTvXRXP30MXh9uH-ZPaLl83wxmyyRpkQkpDQnBa_rTleFoBRrxlVb1Y0mpTFEVFTUTaFonR_TAiteC1GqpsjVKI15S8fgZti7D_79YGKSW38ILp-UBatolQOcZaoYKB18jMF0ch_sToWjJFh-SZSDRJklym-J8phDdAjFDLu1CX-r_0l9AvJpdI4</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Mohsin, Muhammad</creator><creator>Jawad, Muhammad</creator><creator>Yameen, Muhammad Arfat</creator><creator>Waseem, Amir</creator><creator>Shah, Sajid Hussain</creator><creator>Shaikh, Ahson Jabbar</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>An Insight into the Coating Behavior of Bimetallic Silver and Gold Core-Shell Nanoparticles</title><author>Mohsin, Muhammad ; Jawad, Muhammad ; Yameen, Muhammad Arfat ; Waseem, Amir ; Shah, Sajid Hussain ; Shaikh, Ahson Jabbar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ac512588fc729330c45ad78bc16ee197398b2a38011c90a58996ab2b2bbac05d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bimetals</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Core-shell particles</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>Gold</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Saline solutions</topic><topic>Shells</topic><topic>Shells (structural forms)</topic><topic>Silver</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohsin, Muhammad</creatorcontrib><creatorcontrib>Jawad, Muhammad</creatorcontrib><creatorcontrib>Yameen, Muhammad Arfat</creatorcontrib><creatorcontrib>Waseem, Amir</creatorcontrib><creatorcontrib>Shah, Sajid Hussain</creatorcontrib><creatorcontrib>Shaikh, Ahson Jabbar</creatorcontrib><collection>CrossRef</collection><jtitle>Plasmonics (Norwell, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohsin, Muhammad</au><au>Jawad, Muhammad</au><au>Yameen, Muhammad Arfat</au><au>Waseem, Amir</au><au>Shah, Sajid Hussain</au><au>Shaikh, Ahson Jabbar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Insight into the Coating Behavior of Bimetallic Silver and Gold Core-Shell Nanoparticles</atitle><jtitle>Plasmonics (Norwell, Mass.)</jtitle><stitle>Plasmonics</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>15</volume><issue>6</issue><spage>1599</spage><epage>1612</epage><pages>1599-1612</pages><issn>1557-1955</issn><eissn>1557-1963</eissn><abstract>Bimetallic Ag (core) /Au (shell) and Au (core) /Ag (shell) core-shell nanoparticles are synthesized in aqueous phase using simple citrate reduction method with variations for both sets in the reaction conditions during the fabrication of shell structure, i.e., change in salt concentration, temperature (from 25 to 100 °C), and pH for salt solutions (from 2 to 12). The surface plasmon resonance effect, size and morphology, elemental composition, crystalline structure, and crystallite size were observed for these bimetallic core-shell nanoparticles using techniques such as UV-Vis spectroscopy, SEM, EDX, and XRD respectively. The size observed for Ag (core) /Au (shell) nanoparticles was 50 ± 6 nm, and Au (core) /Ag (shell) nanoparticles was 64 ± 8 nm. Increasing the concentration of salt for Au or Ag shows better coating and increase in shell thickness as observed by surface plasmon resonance (SPR) peaks. At lower temperatures, generally, agglomeration occurs or in case of Au (core) /Ag (shell) nanoparticles, formation of Ag 3 O 4 occurs; however, at higher temperatures, homogenous small-sized nanoparticles with higher crystallinity are formed. For Ag (core) /Au (shell) nanoparticles, at pH 4, best uniformly distributed nanoparticles are formed with higher crystallinity; however for Au (core) /Ag (shell) nanoparticles, pH 7 is the optimal pH, where uniformly sized nanoparticles with higher crystalline structure are formed. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11468-020-01166-y</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1557-1955
ispartof Plasmonics (Norwell, Mass.), 2020-12, Vol.15 (6), p.1599-1612
issn 1557-1955
1557-1963
language eng
recordid cdi_proquest_journals_2473789954
source SpringerLink Journals - AutoHoldings
subjects Bimetals
Biochemistry
Biological and Medical Physics
Biophysics
Biotechnology
Chemistry
Chemistry and Materials Science
Core-shell particles
Crystal structure
Crystallinity
Crystallites
Gold
Morphology
Nanoparticles
Nanotechnology
Saline solutions
Shells
Shells (structural forms)
Silver
Surface plasmon resonance
title An Insight into the Coating Behavior of Bimetallic Silver and Gold Core-Shell Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Insight%20into%20the%20Coating%20Behavior%20of%20Bimetallic%20Silver%20and%20Gold%20Core-Shell%20Nanoparticles&rft.jtitle=Plasmonics%20(Norwell,%20Mass.)&rft.au=Mohsin,%20Muhammad&rft.date=2020-12-01&rft.volume=15&rft.issue=6&rft.spage=1599&rft.epage=1612&rft.pages=1599-1612&rft.issn=1557-1955&rft.eissn=1557-1963&rft_id=info:doi/10.1007/s11468-020-01166-y&rft_dat=%3Cproquest_cross%3E2473789954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473789954&rft_id=info:pmid/&rfr_iscdi=true