Isobaric Vapor–Liquid Phase Equilibrium Measurements of the Dichloromethane–Titanium Tetrachloride System at 101,325 Pa

Isobaric vapor–liquid phase equilibrium (VLE) data of the titanium tetrachloride (1) + dichloromethane (2) system were measured by a modified Rose equilibrium still at 101,325 Pa. Raman spectroscopy was employed to quantitatively analyze the concentrations of titanium tetrachloride and dichlorometha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solution chemistry 2020-10, Vol.49 (9-10), p.1125-1136
Hauptverfasser: Xiang, Xiaoyan, Xia, Wentang, Yin, Jianguo, Yuan, Xiaoli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1136
container_issue 9-10
container_start_page 1125
container_title Journal of solution chemistry
container_volume 49
creator Xiang, Xiaoyan
Xia, Wentang
Yin, Jianguo
Yuan, Xiaoli
description Isobaric vapor–liquid phase equilibrium (VLE) data of the titanium tetrachloride (1) + dichloromethane (2) system were measured by a modified Rose equilibrium still at 101,325 Pa. Raman spectroscopy was employed to quantitatively analyze the concentrations of titanium tetrachloride and dichloromethane in the samples from the still. The Herington method and the McDermott–Ellis method were used to check the thermodynamic consistency of the experimental data, which were correlated by the Wilson and NRTL models to obtain binary interaction parameters. The results show that the calculated values of mole fraction of the vapor phase and boiling temperature by the Wilson and NRTL models agree well with the experimental data. Finally, the T – x – y diagram was drawn according to the VLE data and calculated data from the Wilson and NRTL models. There is a negative deviation of the new binary system from ideal solution and no azeotropic behavior was found. All these results could guide the separation of dichloromethane and titanium tetrachloride.
doi_str_mv 10.1007/s10953-020-01013-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473789944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473789944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-db995d4388ccb3810e3105807ae9525180cbe20d062513c71da907a5c504921a3</originalsourceid><addsrcrecordid>eNp9UE1OGzEUtqoiNYVeoCtLbBn6bI9re4mAFqQgkAjdWh7PC3GUmQm2ZxGpC-7ABThLj9KT4CRI3XX13qfv5z19hHxlcMoA1LfEwEhRAYcKGDBRbT6QCZOKV9pw9ZFMoPCVUZp_Ip9TWkLB2tQT8vs6DY2LwdNfbj3Ev88v0_A0hpbeLVxCeln2VWhiGDt6gy6NETvsc6LDnOYF0ovgF6shDh3mheux2Gchu34rn2GObseGFun9JmXsqMu0vHciuPzzeueOyMHcrRJ-eZ-H5OHH5ez8qpre_rw-P5tWnivIVdsYI9taaO19IzQDFAykBuXQSC6ZBt8ghxa-FyC8Yq0zhZReQm04c-KQHO9z13F4GjFluxzG2JeTltdKKG1MXRcV36t8HFKKOLfrGDoXN5aB3bZs9y3b0rLdtWw3xST2plTE_SPGf9H_cb0B4rqCuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473789944</pqid></control><display><type>article</type><title>Isobaric Vapor–Liquid Phase Equilibrium Measurements of the Dichloromethane–Titanium Tetrachloride System at 101,325 Pa</title><source>SpringerLink Journals</source><creator>Xiang, Xiaoyan ; Xia, Wentang ; Yin, Jianguo ; Yuan, Xiaoli</creator><creatorcontrib>Xiang, Xiaoyan ; Xia, Wentang ; Yin, Jianguo ; Yuan, Xiaoli</creatorcontrib><description>Isobaric vapor–liquid phase equilibrium (VLE) data of the titanium tetrachloride (1) + dichloromethane (2) system were measured by a modified Rose equilibrium still at 101,325 Pa. Raman spectroscopy was employed to quantitatively analyze the concentrations of titanium tetrachloride and dichloromethane in the samples from the still. The Herington method and the McDermott–Ellis method were used to check the thermodynamic consistency of the experimental data, which were correlated by the Wilson and NRTL models to obtain binary interaction parameters. The results show that the calculated values of mole fraction of the vapor phase and boiling temperature by the Wilson and NRTL models agree well with the experimental data. Finally, the T – x – y diagram was drawn according to the VLE data and calculated data from the Wilson and NRTL models. There is a negative deviation of the new binary system from ideal solution and no azeotropic behavior was found. All these results could guide the separation of dichloromethane and titanium tetrachloride.</description><identifier>ISSN: 0095-9782</identifier><identifier>EISSN: 1572-8927</identifier><identifier>DOI: 10.1007/s10953-020-01013-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Dichloromethane ; Geochemistry ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Interaction parameters ; Liquid phases ; Oceanography ; Physical Chemistry ; Raman spectroscopy ; Titanium ; Titanium chlorides ; Vapor phases</subject><ispartof>Journal of solution chemistry, 2020-10, Vol.49 (9-10), p.1125-1136</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-db995d4388ccb3810e3105807ae9525180cbe20d062513c71da907a5c504921a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10953-020-01013-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10953-020-01013-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Xiang, Xiaoyan</creatorcontrib><creatorcontrib>Xia, Wentang</creatorcontrib><creatorcontrib>Yin, Jianguo</creatorcontrib><creatorcontrib>Yuan, Xiaoli</creatorcontrib><title>Isobaric Vapor–Liquid Phase Equilibrium Measurements of the Dichloromethane–Titanium Tetrachloride System at 101,325 Pa</title><title>Journal of solution chemistry</title><addtitle>J Solution Chem</addtitle><description>Isobaric vapor–liquid phase equilibrium (VLE) data of the titanium tetrachloride (1) + dichloromethane (2) system were measured by a modified Rose equilibrium still at 101,325 Pa. Raman spectroscopy was employed to quantitatively analyze the concentrations of titanium tetrachloride and dichloromethane in the samples from the still. The Herington method and the McDermott–Ellis method were used to check the thermodynamic consistency of the experimental data, which were correlated by the Wilson and NRTL models to obtain binary interaction parameters. The results show that the calculated values of mole fraction of the vapor phase and boiling temperature by the Wilson and NRTL models agree well with the experimental data. Finally, the T – x – y diagram was drawn according to the VLE data and calculated data from the Wilson and NRTL models. There is a negative deviation of the new binary system from ideal solution and no azeotropic behavior was found. All these results could guide the separation of dichloromethane and titanium tetrachloride.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Dichloromethane</subject><subject>Geochemistry</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Interaction parameters</subject><subject>Liquid phases</subject><subject>Oceanography</subject><subject>Physical Chemistry</subject><subject>Raman spectroscopy</subject><subject>Titanium</subject><subject>Titanium chlorides</subject><subject>Vapor phases</subject><issn>0095-9782</issn><issn>1572-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1OGzEUtqoiNYVeoCtLbBn6bI9re4mAFqQgkAjdWh7PC3GUmQm2ZxGpC-7ABThLj9KT4CRI3XX13qfv5z19hHxlcMoA1LfEwEhRAYcKGDBRbT6QCZOKV9pw9ZFMoPCVUZp_Ip9TWkLB2tQT8vs6DY2LwdNfbj3Ev88v0_A0hpbeLVxCeln2VWhiGDt6gy6NETvsc6LDnOYF0ovgF6shDh3mheux2Gchu34rn2GObseGFun9JmXsqMu0vHciuPzzeueOyMHcrRJ-eZ-H5OHH5ez8qpre_rw-P5tWnivIVdsYI9taaO19IzQDFAykBuXQSC6ZBt8ghxa-FyC8Yq0zhZReQm04c-KQHO9z13F4GjFluxzG2JeTltdKKG1MXRcV36t8HFKKOLfrGDoXN5aB3bZs9y3b0rLdtWw3xST2plTE_SPGf9H_cb0B4rqCuA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Xiang, Xiaoyan</creator><creator>Xia, Wentang</creator><creator>Yin, Jianguo</creator><creator>Yuan, Xiaoli</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Isobaric Vapor–Liquid Phase Equilibrium Measurements of the Dichloromethane–Titanium Tetrachloride System at 101,325 Pa</title><author>Xiang, Xiaoyan ; Xia, Wentang ; Yin, Jianguo ; Yuan, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-db995d4388ccb3810e3105807ae9525180cbe20d062513c71da907a5c504921a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Dichloromethane</topic><topic>Geochemistry</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Interaction parameters</topic><topic>Liquid phases</topic><topic>Oceanography</topic><topic>Physical Chemistry</topic><topic>Raman spectroscopy</topic><topic>Titanium</topic><topic>Titanium chlorides</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Xiaoyan</creatorcontrib><creatorcontrib>Xia, Wentang</creatorcontrib><creatorcontrib>Yin, Jianguo</creatorcontrib><creatorcontrib>Yuan, Xiaoli</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solution chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Xiaoyan</au><au>Xia, Wentang</au><au>Yin, Jianguo</au><au>Yuan, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isobaric Vapor–Liquid Phase Equilibrium Measurements of the Dichloromethane–Titanium Tetrachloride System at 101,325 Pa</atitle><jtitle>Journal of solution chemistry</jtitle><stitle>J Solution Chem</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>49</volume><issue>9-10</issue><spage>1125</spage><epage>1136</epage><pages>1125-1136</pages><issn>0095-9782</issn><eissn>1572-8927</eissn><abstract>Isobaric vapor–liquid phase equilibrium (VLE) data of the titanium tetrachloride (1) + dichloromethane (2) system were measured by a modified Rose equilibrium still at 101,325 Pa. Raman spectroscopy was employed to quantitatively analyze the concentrations of titanium tetrachloride and dichloromethane in the samples from the still. The Herington method and the McDermott–Ellis method were used to check the thermodynamic consistency of the experimental data, which were correlated by the Wilson and NRTL models to obtain binary interaction parameters. The results show that the calculated values of mole fraction of the vapor phase and boiling temperature by the Wilson and NRTL models agree well with the experimental data. Finally, the T – x – y diagram was drawn according to the VLE data and calculated data from the Wilson and NRTL models. There is a negative deviation of the new binary system from ideal solution and no azeotropic behavior was found. All these results could guide the separation of dichloromethane and titanium tetrachloride.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10953-020-01013-y</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0095-9782
ispartof Journal of solution chemistry, 2020-10, Vol.49 (9-10), p.1125-1136
issn 0095-9782
1572-8927
language eng
recordid cdi_proquest_journals_2473789944
source SpringerLink Journals
subjects Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Dichloromethane
Geochemistry
Industrial Chemistry/Chemical Engineering
Inorganic Chemistry
Interaction parameters
Liquid phases
Oceanography
Physical Chemistry
Raman spectroscopy
Titanium
Titanium chlorides
Vapor phases
title Isobaric Vapor–Liquid Phase Equilibrium Measurements of the Dichloromethane–Titanium Tetrachloride System at 101,325 Pa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isobaric%20Vapor%E2%80%93Liquid%20Phase%20Equilibrium%20Measurements%20of%20the%20Dichloromethane%E2%80%93Titanium%20Tetrachloride%20System%20at%20101,325%C2%A0Pa&rft.jtitle=Journal%20of%20solution%20chemistry&rft.au=Xiang,%20Xiaoyan&rft.date=2020-10-01&rft.volume=49&rft.issue=9-10&rft.spage=1125&rft.epage=1136&rft.pages=1125-1136&rft.issn=0095-9782&rft.eissn=1572-8927&rft_id=info:doi/10.1007/s10953-020-01013-y&rft_dat=%3Cproquest_cross%3E2473789944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473789944&rft_id=info:pmid/&rfr_iscdi=true