Instrumental analysis and molecular modelling of inclusion complexes containing artesunate

A series of five guest–host inclusion complexes containing the antimalarial and anticancer agent artesunate (ATS) were obtained and characterized in the present study. Different cyclodextrins (CDNs) were used as hosts [α-cyclodextrin (CDN 1 ), β-cyclodextrin (CDN 2 ), γ-cyclodextrin (CDN 3 ), (2-hyd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2020-12, Vol.142 (5), p.1951-1961
Hauptverfasser: Circioban, Denisa, Ledeti, Ionut, Suta, Lenuta-Maria, Vlase, Gabriela, Ledeti, Adriana, Vlase, Titus, Varut, Renata, Sbarcea, Laura, Trandafirescu, Cristina, Dehelean, Cristina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1961
container_issue 5
container_start_page 1951
container_title Journal of thermal analysis and calorimetry
container_volume 142
creator Circioban, Denisa
Ledeti, Ionut
Suta, Lenuta-Maria
Vlase, Gabriela
Ledeti, Adriana
Vlase, Titus
Varut, Renata
Sbarcea, Laura
Trandafirescu, Cristina
Dehelean, Cristina
description A series of five guest–host inclusion complexes containing the antimalarial and anticancer agent artesunate (ATS) were obtained and characterized in the present study. Different cyclodextrins (CDNs) were used as hosts [α-cyclodextrin (CDN 1 ), β-cyclodextrin (CDN 2 ), γ-cyclodextrin (CDN 3 ), (2-hydroxypropyl)-β-cyclodextrin (CDN 4 ) and (2-hydroxypropyl)-γ-cyclodextrin (CDN 5 )], and the formation of the adducts was simulated using molecular modelling. The results indicating the hypothetical formation of all complexes were confirmed on the prepared samples by FTIR spectroscopy and thermal analysis (TG—thermogravimetric/DTG—derivative thermogravimetric/HF—heat flow). Our results showed that the partially entrapment of ATS inside the cavity of each cyclodextrin is a consequence of H-bonds formation, electrostatic interactions (dipole–dipole) and hydration water substitution. Also, all complexes formed in a 1:1 molecular ratio presented with higher thermal stability than pure ATS, making the analysed adducts possible alternatives in the drug design process of new and improved pharmaceutical formulations containing ATS.
doi_str_mv 10.1007/s10973-020-09975-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2473786322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A641736379</galeid><sourcerecordid>A641736379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-134b8e577c5812bc8bd5de0b4e22e325c533f69f744187c4a5f270ec89bde9f03</originalsourceid><addsrcrecordid>eNp9kctKxDAUhosoOI6-gKuCKxfVXJqmXYp4GRAELxs3IU1PhgxpOua0oG9vxhFkQCSL_ITvC5zzZ9kpJReUEHmJlDSSF4SRgjSNFAXfy2ZU1HXBGlbtp8xTrqggh9kR4oqQhBE6y94WAcc49RBG7XMdtP9Ehyl0eT94MJPXMaUOvHdhmQ82d8H4Cd0QcjP0aw8fgCkl3YUNoeMIOAU9wnF2YLVHOPm559nr7c3L9X3x8Hi3uL56KEwp5FhQXrY1CCmNqClrTd12ogPSlsAYcCaM4NxWjZVlSWtpSi0skwRM3bQdNJbweXa2_Xcdh_cJcFSrYYppElSslFzWFWfsl1pqD8oFO4xRm96hUVdVSSWvuGwSdfEHlU4HvUtTgnXpfUc43xE2m4CPcaknRLV4ftpl2ZY1cUCMYNU6ul7HT0WJ2tSotjWqVKP6rlHxJPGthAkOS4i_0_1jfQFaVp9X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473786322</pqid></control><display><type>article</type><title>Instrumental analysis and molecular modelling of inclusion complexes containing artesunate</title><source>SpringerNature Journals</source><creator>Circioban, Denisa ; Ledeti, Ionut ; Suta, Lenuta-Maria ; Vlase, Gabriela ; Ledeti, Adriana ; Vlase, Titus ; Varut, Renata ; Sbarcea, Laura ; Trandafirescu, Cristina ; Dehelean, Cristina</creator><creatorcontrib>Circioban, Denisa ; Ledeti, Ionut ; Suta, Lenuta-Maria ; Vlase, Gabriela ; Ledeti, Adriana ; Vlase, Titus ; Varut, Renata ; Sbarcea, Laura ; Trandafirescu, Cristina ; Dehelean, Cristina</creatorcontrib><description>A series of five guest–host inclusion complexes containing the antimalarial and anticancer agent artesunate (ATS) were obtained and characterized in the present study. Different cyclodextrins (CDNs) were used as hosts [α-cyclodextrin (CDN 1 ), β-cyclodextrin (CDN 2 ), γ-cyclodextrin (CDN 3 ), (2-hydroxypropyl)-β-cyclodextrin (CDN 4 ) and (2-hydroxypropyl)-γ-cyclodextrin (CDN 5 )], and the formation of the adducts was simulated using molecular modelling. The results indicating the hypothetical formation of all complexes were confirmed on the prepared samples by FTIR spectroscopy and thermal analysis (TG—thermogravimetric/DTG—derivative thermogravimetric/HF—heat flow). Our results showed that the partially entrapment of ATS inside the cavity of each cyclodextrin is a consequence of H-bonds formation, electrostatic interactions (dipole–dipole) and hydration water substitution. Also, all complexes formed in a 1:1 molecular ratio presented with higher thermal stability than pure ATS, making the analysed adducts possible alternatives in the drug design process of new and improved pharmaceutical formulations containing ATS.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-020-09975-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adducts ; Analysis ; Analytical Chemistry ; Anticancer properties ; Chemistry ; Chemistry and Materials Science ; Cyclodextrins ; Dextrins ; Dipoles ; Entrapment ; Heat transmission ; Hydrogen bonding ; Inclusion complexes ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Modelling ; Physical Chemistry ; Polymer Sciences ; Stability analysis ; Thermal analysis ; Thermal stability</subject><ispartof>Journal of thermal analysis and calorimetry, 2020-12, Vol.142 (5), p.1951-1961</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-134b8e577c5812bc8bd5de0b4e22e325c533f69f744187c4a5f270ec89bde9f03</citedby><cites>FETCH-LOGICAL-c457t-134b8e577c5812bc8bd5de0b4e22e325c533f69f744187c4a5f270ec89bde9f03</cites><orcidid>0000-0002-3462-1863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-020-09975-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-020-09975-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Circioban, Denisa</creatorcontrib><creatorcontrib>Ledeti, Ionut</creatorcontrib><creatorcontrib>Suta, Lenuta-Maria</creatorcontrib><creatorcontrib>Vlase, Gabriela</creatorcontrib><creatorcontrib>Ledeti, Adriana</creatorcontrib><creatorcontrib>Vlase, Titus</creatorcontrib><creatorcontrib>Varut, Renata</creatorcontrib><creatorcontrib>Sbarcea, Laura</creatorcontrib><creatorcontrib>Trandafirescu, Cristina</creatorcontrib><creatorcontrib>Dehelean, Cristina</creatorcontrib><title>Instrumental analysis and molecular modelling of inclusion complexes containing artesunate</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>A series of five guest–host inclusion complexes containing the antimalarial and anticancer agent artesunate (ATS) were obtained and characterized in the present study. Different cyclodextrins (CDNs) were used as hosts [α-cyclodextrin (CDN 1 ), β-cyclodextrin (CDN 2 ), γ-cyclodextrin (CDN 3 ), (2-hydroxypropyl)-β-cyclodextrin (CDN 4 ) and (2-hydroxypropyl)-γ-cyclodextrin (CDN 5 )], and the formation of the adducts was simulated using molecular modelling. The results indicating the hypothetical formation of all complexes were confirmed on the prepared samples by FTIR spectroscopy and thermal analysis (TG—thermogravimetric/DTG—derivative thermogravimetric/HF—heat flow). Our results showed that the partially entrapment of ATS inside the cavity of each cyclodextrin is a consequence of H-bonds formation, electrostatic interactions (dipole–dipole) and hydration water substitution. Also, all complexes formed in a 1:1 molecular ratio presented with higher thermal stability than pure ATS, making the analysed adducts possible alternatives in the drug design process of new and improved pharmaceutical formulations containing ATS.</description><subject>Adducts</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Anticancer properties</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cyclodextrins</subject><subject>Dextrins</subject><subject>Dipoles</subject><subject>Entrapment</subject><subject>Heat transmission</subject><subject>Hydrogen bonding</subject><subject>Inclusion complexes</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Modelling</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Stability analysis</subject><subject>Thermal analysis</subject><subject>Thermal stability</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctKxDAUhosoOI6-gKuCKxfVXJqmXYp4GRAELxs3IU1PhgxpOua0oG9vxhFkQCSL_ITvC5zzZ9kpJReUEHmJlDSSF4SRgjSNFAXfy2ZU1HXBGlbtp8xTrqggh9kR4oqQhBE6y94WAcc49RBG7XMdtP9Ehyl0eT94MJPXMaUOvHdhmQ82d8H4Cd0QcjP0aw8fgCkl3YUNoeMIOAU9wnF2YLVHOPm559nr7c3L9X3x8Hi3uL56KEwp5FhQXrY1CCmNqClrTd12ogPSlsAYcCaM4NxWjZVlSWtpSi0skwRM3bQdNJbweXa2_Xcdh_cJcFSrYYppElSslFzWFWfsl1pqD8oFO4xRm96hUVdVSSWvuGwSdfEHlU4HvUtTgnXpfUc43xE2m4CPcaknRLV4ftpl2ZY1cUCMYNU6ul7HT0WJ2tSotjWqVKP6rlHxJPGthAkOS4i_0_1jfQFaVp9X</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Circioban, Denisa</creator><creator>Ledeti, Ionut</creator><creator>Suta, Lenuta-Maria</creator><creator>Vlase, Gabriela</creator><creator>Ledeti, Adriana</creator><creator>Vlase, Titus</creator><creator>Varut, Renata</creator><creator>Sbarcea, Laura</creator><creator>Trandafirescu, Cristina</creator><creator>Dehelean, Cristina</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-3462-1863</orcidid></search><sort><creationdate>20201201</creationdate><title>Instrumental analysis and molecular modelling of inclusion complexes containing artesunate</title><author>Circioban, Denisa ; Ledeti, Ionut ; Suta, Lenuta-Maria ; Vlase, Gabriela ; Ledeti, Adriana ; Vlase, Titus ; Varut, Renata ; Sbarcea, Laura ; Trandafirescu, Cristina ; Dehelean, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-134b8e577c5812bc8bd5de0b4e22e325c533f69f744187c4a5f270ec89bde9f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adducts</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Anticancer properties</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cyclodextrins</topic><topic>Dextrins</topic><topic>Dipoles</topic><topic>Entrapment</topic><topic>Heat transmission</topic><topic>Hydrogen bonding</topic><topic>Inclusion complexes</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Modelling</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Stability analysis</topic><topic>Thermal analysis</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Circioban, Denisa</creatorcontrib><creatorcontrib>Ledeti, Ionut</creatorcontrib><creatorcontrib>Suta, Lenuta-Maria</creatorcontrib><creatorcontrib>Vlase, Gabriela</creatorcontrib><creatorcontrib>Ledeti, Adriana</creatorcontrib><creatorcontrib>Vlase, Titus</creatorcontrib><creatorcontrib>Varut, Renata</creatorcontrib><creatorcontrib>Sbarcea, Laura</creatorcontrib><creatorcontrib>Trandafirescu, Cristina</creatorcontrib><creatorcontrib>Dehelean, Cristina</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Circioban, Denisa</au><au>Ledeti, Ionut</au><au>Suta, Lenuta-Maria</au><au>Vlase, Gabriela</au><au>Ledeti, Adriana</au><au>Vlase, Titus</au><au>Varut, Renata</au><au>Sbarcea, Laura</au><au>Trandafirescu, Cristina</au><au>Dehelean, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instrumental analysis and molecular modelling of inclusion complexes containing artesunate</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>142</volume><issue>5</issue><spage>1951</spage><epage>1961</epage><pages>1951-1961</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>A series of five guest–host inclusion complexes containing the antimalarial and anticancer agent artesunate (ATS) were obtained and characterized in the present study. Different cyclodextrins (CDNs) were used as hosts [α-cyclodextrin (CDN 1 ), β-cyclodextrin (CDN 2 ), γ-cyclodextrin (CDN 3 ), (2-hydroxypropyl)-β-cyclodextrin (CDN 4 ) and (2-hydroxypropyl)-γ-cyclodextrin (CDN 5 )], and the formation of the adducts was simulated using molecular modelling. The results indicating the hypothetical formation of all complexes were confirmed on the prepared samples by FTIR spectroscopy and thermal analysis (TG—thermogravimetric/DTG—derivative thermogravimetric/HF—heat flow). Our results showed that the partially entrapment of ATS inside the cavity of each cyclodextrin is a consequence of H-bonds formation, electrostatic interactions (dipole–dipole) and hydration water substitution. Also, all complexes formed in a 1:1 molecular ratio presented with higher thermal stability than pure ATS, making the analysed adducts possible alternatives in the drug design process of new and improved pharmaceutical formulations containing ATS.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-020-09975-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3462-1863</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2020-12, Vol.142 (5), p.1951-1961
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2473786322
source SpringerNature Journals
subjects Adducts
Analysis
Analytical Chemistry
Anticancer properties
Chemistry
Chemistry and Materials Science
Cyclodextrins
Dextrins
Dipoles
Entrapment
Heat transmission
Hydrogen bonding
Inclusion complexes
Inorganic Chemistry
Measurement Science and Instrumentation
Modelling
Physical Chemistry
Polymer Sciences
Stability analysis
Thermal analysis
Thermal stability
title Instrumental analysis and molecular modelling of inclusion complexes containing artesunate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instrumental%20analysis%20and%20molecular%20modelling%20of%20inclusion%20complexes%20containing%20artesunate&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Circioban,%20Denisa&rft.date=2020-12-01&rft.volume=142&rft.issue=5&rft.spage=1951&rft.epage=1961&rft.pages=1951-1961&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-020-09975-3&rft_dat=%3Cgale_proqu%3EA641736379%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473786322&rft_id=info:pmid/&rft_galeid=A641736379&rfr_iscdi=true