Instrumental analysis and molecular modelling of inclusion complexes containing artesunate
A series of five guest–host inclusion complexes containing the antimalarial and anticancer agent artesunate (ATS) were obtained and characterized in the present study. Different cyclodextrins (CDNs) were used as hosts [α-cyclodextrin (CDN 1 ), β-cyclodextrin (CDN 2 ), γ-cyclodextrin (CDN 3 ), (2-hyd...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2020-12, Vol.142 (5), p.1951-1961 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1961 |
---|---|
container_issue | 5 |
container_start_page | 1951 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 142 |
creator | Circioban, Denisa Ledeti, Ionut Suta, Lenuta-Maria Vlase, Gabriela Ledeti, Adriana Vlase, Titus Varut, Renata Sbarcea, Laura Trandafirescu, Cristina Dehelean, Cristina |
description | A series of five guest–host inclusion complexes containing the antimalarial and anticancer agent artesunate (ATS) were obtained and characterized in the present study. Different cyclodextrins (CDNs) were used as hosts [α-cyclodextrin (CDN
1
), β-cyclodextrin (CDN
2
), γ-cyclodextrin (CDN
3
), (2-hydroxypropyl)-β-cyclodextrin (CDN
4
) and (2-hydroxypropyl)-γ-cyclodextrin (CDN
5
)], and the formation of the adducts was simulated using molecular modelling. The results indicating the hypothetical formation of all complexes were confirmed on the prepared samples by FTIR spectroscopy and thermal analysis (TG—thermogravimetric/DTG—derivative thermogravimetric/HF—heat flow). Our results showed that the partially entrapment of ATS inside the cavity of each cyclodextrin is a consequence of H-bonds formation, electrostatic interactions (dipole–dipole) and hydration water substitution. Also, all complexes formed in a 1:1 molecular ratio presented with higher thermal stability than pure ATS, making the analysed adducts possible alternatives in the drug design process of new and improved pharmaceutical formulations containing ATS. |
doi_str_mv | 10.1007/s10973-020-09975-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2473786322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A641736379</galeid><sourcerecordid>A641736379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-134b8e577c5812bc8bd5de0b4e22e325c533f69f744187c4a5f270ec89bde9f03</originalsourceid><addsrcrecordid>eNp9kctKxDAUhosoOI6-gKuCKxfVXJqmXYp4GRAELxs3IU1PhgxpOua0oG9vxhFkQCSL_ITvC5zzZ9kpJReUEHmJlDSSF4SRgjSNFAXfy2ZU1HXBGlbtp8xTrqggh9kR4oqQhBE6y94WAcc49RBG7XMdtP9Ehyl0eT94MJPXMaUOvHdhmQ82d8H4Cd0QcjP0aw8fgCkl3YUNoeMIOAU9wnF2YLVHOPm559nr7c3L9X3x8Hi3uL56KEwp5FhQXrY1CCmNqClrTd12ogPSlsAYcCaM4NxWjZVlSWtpSi0skwRM3bQdNJbweXa2_Xcdh_cJcFSrYYppElSslFzWFWfsl1pqD8oFO4xRm96hUVdVSSWvuGwSdfEHlU4HvUtTgnXpfUc43xE2m4CPcaknRLV4ftpl2ZY1cUCMYNU6ul7HT0WJ2tSotjWqVKP6rlHxJPGthAkOS4i_0_1jfQFaVp9X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473786322</pqid></control><display><type>article</type><title>Instrumental analysis and molecular modelling of inclusion complexes containing artesunate</title><source>SpringerNature Journals</source><creator>Circioban, Denisa ; Ledeti, Ionut ; Suta, Lenuta-Maria ; Vlase, Gabriela ; Ledeti, Adriana ; Vlase, Titus ; Varut, Renata ; Sbarcea, Laura ; Trandafirescu, Cristina ; Dehelean, Cristina</creator><creatorcontrib>Circioban, Denisa ; Ledeti, Ionut ; Suta, Lenuta-Maria ; Vlase, Gabriela ; Ledeti, Adriana ; Vlase, Titus ; Varut, Renata ; Sbarcea, Laura ; Trandafirescu, Cristina ; Dehelean, Cristina</creatorcontrib><description>A series of five guest–host inclusion complexes containing the antimalarial and anticancer agent artesunate (ATS) were obtained and characterized in the present study. Different cyclodextrins (CDNs) were used as hosts [α-cyclodextrin (CDN
1
), β-cyclodextrin (CDN
2
), γ-cyclodextrin (CDN
3
), (2-hydroxypropyl)-β-cyclodextrin (CDN
4
) and (2-hydroxypropyl)-γ-cyclodextrin (CDN
5
)], and the formation of the adducts was simulated using molecular modelling. The results indicating the hypothetical formation of all complexes were confirmed on the prepared samples by FTIR spectroscopy and thermal analysis (TG—thermogravimetric/DTG—derivative thermogravimetric/HF—heat flow). Our results showed that the partially entrapment of ATS inside the cavity of each cyclodextrin is a consequence of H-bonds formation, electrostatic interactions (dipole–dipole) and hydration water substitution. Also, all complexes formed in a 1:1 molecular ratio presented with higher thermal stability than pure ATS, making the analysed adducts possible alternatives in the drug design process of new and improved pharmaceutical formulations containing ATS.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-020-09975-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adducts ; Analysis ; Analytical Chemistry ; Anticancer properties ; Chemistry ; Chemistry and Materials Science ; Cyclodextrins ; Dextrins ; Dipoles ; Entrapment ; Heat transmission ; Hydrogen bonding ; Inclusion complexes ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Modelling ; Physical Chemistry ; Polymer Sciences ; Stability analysis ; Thermal analysis ; Thermal stability</subject><ispartof>Journal of thermal analysis and calorimetry, 2020-12, Vol.142 (5), p.1951-1961</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-134b8e577c5812bc8bd5de0b4e22e325c533f69f744187c4a5f270ec89bde9f03</citedby><cites>FETCH-LOGICAL-c457t-134b8e577c5812bc8bd5de0b4e22e325c533f69f744187c4a5f270ec89bde9f03</cites><orcidid>0000-0002-3462-1863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-020-09975-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-020-09975-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Circioban, Denisa</creatorcontrib><creatorcontrib>Ledeti, Ionut</creatorcontrib><creatorcontrib>Suta, Lenuta-Maria</creatorcontrib><creatorcontrib>Vlase, Gabriela</creatorcontrib><creatorcontrib>Ledeti, Adriana</creatorcontrib><creatorcontrib>Vlase, Titus</creatorcontrib><creatorcontrib>Varut, Renata</creatorcontrib><creatorcontrib>Sbarcea, Laura</creatorcontrib><creatorcontrib>Trandafirescu, Cristina</creatorcontrib><creatorcontrib>Dehelean, Cristina</creatorcontrib><title>Instrumental analysis and molecular modelling of inclusion complexes containing artesunate</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>A series of five guest–host inclusion complexes containing the antimalarial and anticancer agent artesunate (ATS) were obtained and characterized in the present study. Different cyclodextrins (CDNs) were used as hosts [α-cyclodextrin (CDN
1
), β-cyclodextrin (CDN
2
), γ-cyclodextrin (CDN
3
), (2-hydroxypropyl)-β-cyclodextrin (CDN
4
) and (2-hydroxypropyl)-γ-cyclodextrin (CDN
5
)], and the formation of the adducts was simulated using molecular modelling. The results indicating the hypothetical formation of all complexes were confirmed on the prepared samples by FTIR spectroscopy and thermal analysis (TG—thermogravimetric/DTG—derivative thermogravimetric/HF—heat flow). Our results showed that the partially entrapment of ATS inside the cavity of each cyclodextrin is a consequence of H-bonds formation, electrostatic interactions (dipole–dipole) and hydration water substitution. Also, all complexes formed in a 1:1 molecular ratio presented with higher thermal stability than pure ATS, making the analysed adducts possible alternatives in the drug design process of new and improved pharmaceutical formulations containing ATS.</description><subject>Adducts</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Anticancer properties</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cyclodextrins</subject><subject>Dextrins</subject><subject>Dipoles</subject><subject>Entrapment</subject><subject>Heat transmission</subject><subject>Hydrogen bonding</subject><subject>Inclusion complexes</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Modelling</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Stability analysis</subject><subject>Thermal analysis</subject><subject>Thermal stability</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctKxDAUhosoOI6-gKuCKxfVXJqmXYp4GRAELxs3IU1PhgxpOua0oG9vxhFkQCSL_ITvC5zzZ9kpJReUEHmJlDSSF4SRgjSNFAXfy2ZU1HXBGlbtp8xTrqggh9kR4oqQhBE6y94WAcc49RBG7XMdtP9Ehyl0eT94MJPXMaUOvHdhmQ82d8H4Cd0QcjP0aw8fgCkl3YUNoeMIOAU9wnF2YLVHOPm559nr7c3L9X3x8Hi3uL56KEwp5FhQXrY1CCmNqClrTd12ogPSlsAYcCaM4NxWjZVlSWtpSi0skwRM3bQdNJbweXa2_Xcdh_cJcFSrYYppElSslFzWFWfsl1pqD8oFO4xRm96hUVdVSSWvuGwSdfEHlU4HvUtTgnXpfUc43xE2m4CPcaknRLV4ftpl2ZY1cUCMYNU6ul7HT0WJ2tSotjWqVKP6rlHxJPGthAkOS4i_0_1jfQFaVp9X</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Circioban, Denisa</creator><creator>Ledeti, Ionut</creator><creator>Suta, Lenuta-Maria</creator><creator>Vlase, Gabriela</creator><creator>Ledeti, Adriana</creator><creator>Vlase, Titus</creator><creator>Varut, Renata</creator><creator>Sbarcea, Laura</creator><creator>Trandafirescu, Cristina</creator><creator>Dehelean, Cristina</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-3462-1863</orcidid></search><sort><creationdate>20201201</creationdate><title>Instrumental analysis and molecular modelling of inclusion complexes containing artesunate</title><author>Circioban, Denisa ; Ledeti, Ionut ; Suta, Lenuta-Maria ; Vlase, Gabriela ; Ledeti, Adriana ; Vlase, Titus ; Varut, Renata ; Sbarcea, Laura ; Trandafirescu, Cristina ; Dehelean, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-134b8e577c5812bc8bd5de0b4e22e325c533f69f744187c4a5f270ec89bde9f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adducts</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Anticancer properties</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cyclodextrins</topic><topic>Dextrins</topic><topic>Dipoles</topic><topic>Entrapment</topic><topic>Heat transmission</topic><topic>Hydrogen bonding</topic><topic>Inclusion complexes</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Modelling</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Stability analysis</topic><topic>Thermal analysis</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Circioban, Denisa</creatorcontrib><creatorcontrib>Ledeti, Ionut</creatorcontrib><creatorcontrib>Suta, Lenuta-Maria</creatorcontrib><creatorcontrib>Vlase, Gabriela</creatorcontrib><creatorcontrib>Ledeti, Adriana</creatorcontrib><creatorcontrib>Vlase, Titus</creatorcontrib><creatorcontrib>Varut, Renata</creatorcontrib><creatorcontrib>Sbarcea, Laura</creatorcontrib><creatorcontrib>Trandafirescu, Cristina</creatorcontrib><creatorcontrib>Dehelean, Cristina</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Circioban, Denisa</au><au>Ledeti, Ionut</au><au>Suta, Lenuta-Maria</au><au>Vlase, Gabriela</au><au>Ledeti, Adriana</au><au>Vlase, Titus</au><au>Varut, Renata</au><au>Sbarcea, Laura</au><au>Trandafirescu, Cristina</au><au>Dehelean, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instrumental analysis and molecular modelling of inclusion complexes containing artesunate</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>142</volume><issue>5</issue><spage>1951</spage><epage>1961</epage><pages>1951-1961</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>A series of five guest–host inclusion complexes containing the antimalarial and anticancer agent artesunate (ATS) were obtained and characterized in the present study. Different cyclodextrins (CDNs) were used as hosts [α-cyclodextrin (CDN
1
), β-cyclodextrin (CDN
2
), γ-cyclodextrin (CDN
3
), (2-hydroxypropyl)-β-cyclodextrin (CDN
4
) and (2-hydroxypropyl)-γ-cyclodextrin (CDN
5
)], and the formation of the adducts was simulated using molecular modelling. The results indicating the hypothetical formation of all complexes were confirmed on the prepared samples by FTIR spectroscopy and thermal analysis (TG—thermogravimetric/DTG—derivative thermogravimetric/HF—heat flow). Our results showed that the partially entrapment of ATS inside the cavity of each cyclodextrin is a consequence of H-bonds formation, electrostatic interactions (dipole–dipole) and hydration water substitution. Also, all complexes formed in a 1:1 molecular ratio presented with higher thermal stability than pure ATS, making the analysed adducts possible alternatives in the drug design process of new and improved pharmaceutical formulations containing ATS.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-020-09975-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3462-1863</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2020-12, Vol.142 (5), p.1951-1961 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2473786322 |
source | SpringerNature Journals |
subjects | Adducts Analysis Analytical Chemistry Anticancer properties Chemistry Chemistry and Materials Science Cyclodextrins Dextrins Dipoles Entrapment Heat transmission Hydrogen bonding Inclusion complexes Inorganic Chemistry Measurement Science and Instrumentation Modelling Physical Chemistry Polymer Sciences Stability analysis Thermal analysis Thermal stability |
title | Instrumental analysis and molecular modelling of inclusion complexes containing artesunate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instrumental%20analysis%20and%20molecular%20modelling%20of%20inclusion%20complexes%20containing%20artesunate&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Circioban,%20Denisa&rft.date=2020-12-01&rft.volume=142&rft.issue=5&rft.spage=1951&rft.epage=1961&rft.pages=1951-1961&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-020-09975-3&rft_dat=%3Cgale_proqu%3EA641736379%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473786322&rft_id=info:pmid/&rft_galeid=A641736379&rfr_iscdi=true |