Regular ternary semirings in terms of bipolar fuzzy ideals

The central objective of this paper is to introduce α , β -bipolar fuzzy ideals (left, lateral and right) and bi-ideals in ternary semirings by applying the definitions of belongingness ∈ and quasi-coincidence ( q ) of a bipolar fuzzy point with a bipolar fuzzy set. In this work, upper parts and low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2020-12, Vol.39 (4), Article 319
Hauptverfasser: Bashir, Shahida, Mazhar, Rabia, Abbas, Hasnain, Shabir, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Computational & applied mathematics
container_volume 39
creator Bashir, Shahida
Mazhar, Rabia
Abbas, Hasnain
Shabir, Muhammad
description The central objective of this paper is to introduce α , β -bipolar fuzzy ideals (left, lateral and right) and bi-ideals in ternary semirings by applying the definitions of belongingness ∈ and quasi-coincidence ( q ) of a bipolar fuzzy point with a bipolar fuzzy set. In this work, upper parts and lower parts of bipolar fuzzy set in ternary semirings are also discussed. Regular and intra-regular ternary semirings in terms of ∈ , ∈ ∨ q -bipolar fuzzy (left, lateral and right) ideals and ∈ , ∈ ∨ q -bipolar fuzzy bi-ideals are characterized.
doi_str_mv 10.1007/s40314-020-01319-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473784778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473784778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-890593f48a26056e023ad025a8215842ca696c44c28cef41700ae09e5372ede3</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFb_gKeA59XZmU12402KVqEgSO_LmkxKStvE3ebQ_HoTI3jz9GB47zHvE-JWwb0CMA9RAyktAUGCIpXL_kzMlAUjgQDPxQyRrKQM6FJcxbgFIKO0nonHD950Ox-SI4eDD6ck8r4O9WETk_owHvcxaarks26b0VV1fX9K6pL9Ll6Li2oQvvnVuVi_PK8Xr3L1vnxbPK1kQRkdpc0hzanS1mMGacaA5EvA1FtUqdVY-CzPCq0LtAVXWhkAz5BzSga5ZJqLu6m2Dc1Xx_Hotk03_LqLDrUhY7UxdnDh5CpCE2PgyrWh3g-DnAI3InITIjcgcj-IXD-EaArFdpzM4a_6n9Q3RTBoeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473784778</pqid></control><display><type>article</type><title>Regular ternary semirings in terms of bipolar fuzzy ideals</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bashir, Shahida ; Mazhar, Rabia ; Abbas, Hasnain ; Shabir, Muhammad</creator><creatorcontrib>Bashir, Shahida ; Mazhar, Rabia ; Abbas, Hasnain ; Shabir, Muhammad</creatorcontrib><description>The central objective of this paper is to introduce α , β -bipolar fuzzy ideals (left, lateral and right) and bi-ideals in ternary semirings by applying the definitions of belongingness ∈ and quasi-coincidence ( q ) of a bipolar fuzzy point with a bipolar fuzzy set. In this work, upper parts and lower parts of bipolar fuzzy set in ternary semirings are also discussed. Regular and intra-regular ternary semirings in terms of ∈ , ∈ ∨ q -bipolar fuzzy (left, lateral and right) ideals and ∈ , ∈ ∨ q -bipolar fuzzy bi-ideals are characterized.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-020-01319-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Fuzzy sets ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Rings (mathematics)</subject><ispartof>Computational &amp; applied mathematics, 2020-12, Vol.39 (4), Article 319</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020</rights><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-890593f48a26056e023ad025a8215842ca696c44c28cef41700ae09e5372ede3</citedby><cites>FETCH-LOGICAL-c363t-890593f48a26056e023ad025a8215842ca696c44c28cef41700ae09e5372ede3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-020-01319-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-020-01319-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bashir, Shahida</creatorcontrib><creatorcontrib>Mazhar, Rabia</creatorcontrib><creatorcontrib>Abbas, Hasnain</creatorcontrib><creatorcontrib>Shabir, Muhammad</creatorcontrib><title>Regular ternary semirings in terms of bipolar fuzzy ideals</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>The central objective of this paper is to introduce α , β -bipolar fuzzy ideals (left, lateral and right) and bi-ideals in ternary semirings by applying the definitions of belongingness ∈ and quasi-coincidence ( q ) of a bipolar fuzzy point with a bipolar fuzzy set. In this work, upper parts and lower parts of bipolar fuzzy set in ternary semirings are also discussed. Regular and intra-regular ternary semirings in terms of ∈ , ∈ ∨ q -bipolar fuzzy (left, lateral and right) ideals and ∈ , ∈ ∨ q -bipolar fuzzy bi-ideals are characterized.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Fuzzy sets</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rings (mathematics)</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFb_gKeA59XZmU12402KVqEgSO_LmkxKStvE3ebQ_HoTI3jz9GB47zHvE-JWwb0CMA9RAyktAUGCIpXL_kzMlAUjgQDPxQyRrKQM6FJcxbgFIKO0nonHD950Ox-SI4eDD6ck8r4O9WETk_owHvcxaarks26b0VV1fX9K6pL9Ll6Li2oQvvnVuVi_PK8Xr3L1vnxbPK1kQRkdpc0hzanS1mMGacaA5EvA1FtUqdVY-CzPCq0LtAVXWhkAz5BzSga5ZJqLu6m2Dc1Xx_Hotk03_LqLDrUhY7UxdnDh5CpCE2PgyrWh3g-DnAI3InITIjcgcj-IXD-EaArFdpzM4a_6n9Q3RTBoeg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Bashir, Shahida</creator><creator>Mazhar, Rabia</creator><creator>Abbas, Hasnain</creator><creator>Shabir, Muhammad</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Regular ternary semirings in terms of bipolar fuzzy ideals</title><author>Bashir, Shahida ; Mazhar, Rabia ; Abbas, Hasnain ; Shabir, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-890593f48a26056e023ad025a8215842ca696c44c28cef41700ae09e5372ede3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Fuzzy sets</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bashir, Shahida</creatorcontrib><creatorcontrib>Mazhar, Rabia</creatorcontrib><creatorcontrib>Abbas, Hasnain</creatorcontrib><creatorcontrib>Shabir, Muhammad</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashir, Shahida</au><au>Mazhar, Rabia</au><au>Abbas, Hasnain</au><au>Shabir, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regular ternary semirings in terms of bipolar fuzzy ideals</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>39</volume><issue>4</issue><artnum>319</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>The central objective of this paper is to introduce α , β -bipolar fuzzy ideals (left, lateral and right) and bi-ideals in ternary semirings by applying the definitions of belongingness ∈ and quasi-coincidence ( q ) of a bipolar fuzzy point with a bipolar fuzzy set. In this work, upper parts and lower parts of bipolar fuzzy set in ternary semirings are also discussed. Regular and intra-regular ternary semirings in terms of ∈ , ∈ ∨ q -bipolar fuzzy (left, lateral and right) ideals and ∈ , ∈ ∨ q -bipolar fuzzy bi-ideals are characterized.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-020-01319-z</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2020-12, Vol.39 (4), Article 319
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2473784778
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Applied physics
Computational mathematics
Computational Mathematics and Numerical Analysis
Fuzzy sets
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Rings (mathematics)
title Regular ternary semirings in terms of bipolar fuzzy ideals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A01%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regular%20ternary%20semirings%20in%20terms%20of%20bipolar%20fuzzy%20ideals&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Bashir,%20Shahida&rft.date=2020-12-01&rft.volume=39&rft.issue=4&rft.artnum=319&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-020-01319-z&rft_dat=%3Cproquest_cross%3E2473784778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473784778&rft_id=info:pmid/&rfr_iscdi=true