Regular ternary semirings in terms of bipolar fuzzy ideals
The central objective of this paper is to introduce α , β -bipolar fuzzy ideals (left, lateral and right) and bi-ideals in ternary semirings by applying the definitions of belongingness ∈ and quasi-coincidence ( q ) of a bipolar fuzzy point with a bipolar fuzzy set. In this work, upper parts and low...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2020-12, Vol.39 (4), Article 319 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 39 |
creator | Bashir, Shahida Mazhar, Rabia Abbas, Hasnain Shabir, Muhammad |
description | The central objective of this paper is to introduce
α
,
β
-bipolar fuzzy ideals (left, lateral and right) and bi-ideals in ternary semirings by applying the definitions of belongingness
∈
and quasi-coincidence (
q
) of a bipolar fuzzy point with a bipolar fuzzy set. In this work, upper parts and lower parts of bipolar fuzzy set in ternary semirings are also discussed. Regular and intra-regular ternary semirings in terms of
∈
,
∈
∨
q
-bipolar fuzzy (left, lateral and right) ideals and
∈
,
∈
∨
q
-bipolar fuzzy bi-ideals are characterized. |
doi_str_mv | 10.1007/s40314-020-01319-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473784778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473784778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-890593f48a26056e023ad025a8215842ca696c44c28cef41700ae09e5372ede3</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFb_gKeA59XZmU12402KVqEgSO_LmkxKStvE3ebQ_HoTI3jz9GB47zHvE-JWwb0CMA9RAyktAUGCIpXL_kzMlAUjgQDPxQyRrKQM6FJcxbgFIKO0nonHD950Ox-SI4eDD6ck8r4O9WETk_owHvcxaarks26b0VV1fX9K6pL9Ll6Li2oQvvnVuVi_PK8Xr3L1vnxbPK1kQRkdpc0hzanS1mMGacaA5EvA1FtUqdVY-CzPCq0LtAVXWhkAz5BzSga5ZJqLu6m2Dc1Xx_Hotk03_LqLDrUhY7UxdnDh5CpCE2PgyrWh3g-DnAI3InITIjcgcj-IXD-EaArFdpzM4a_6n9Q3RTBoeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473784778</pqid></control><display><type>article</type><title>Regular ternary semirings in terms of bipolar fuzzy ideals</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bashir, Shahida ; Mazhar, Rabia ; Abbas, Hasnain ; Shabir, Muhammad</creator><creatorcontrib>Bashir, Shahida ; Mazhar, Rabia ; Abbas, Hasnain ; Shabir, Muhammad</creatorcontrib><description>The central objective of this paper is to introduce
α
,
β
-bipolar fuzzy ideals (left, lateral and right) and bi-ideals in ternary semirings by applying the definitions of belongingness
∈
and quasi-coincidence (
q
) of a bipolar fuzzy point with a bipolar fuzzy set. In this work, upper parts and lower parts of bipolar fuzzy set in ternary semirings are also discussed. Regular and intra-regular ternary semirings in terms of
∈
,
∈
∨
q
-bipolar fuzzy (left, lateral and right) ideals and
∈
,
∈
∨
q
-bipolar fuzzy bi-ideals are characterized.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-020-01319-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Fuzzy sets ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Rings (mathematics)</subject><ispartof>Computational & applied mathematics, 2020-12, Vol.39 (4), Article 319</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020</rights><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-890593f48a26056e023ad025a8215842ca696c44c28cef41700ae09e5372ede3</citedby><cites>FETCH-LOGICAL-c363t-890593f48a26056e023ad025a8215842ca696c44c28cef41700ae09e5372ede3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-020-01319-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-020-01319-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bashir, Shahida</creatorcontrib><creatorcontrib>Mazhar, Rabia</creatorcontrib><creatorcontrib>Abbas, Hasnain</creatorcontrib><creatorcontrib>Shabir, Muhammad</creatorcontrib><title>Regular ternary semirings in terms of bipolar fuzzy ideals</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>The central objective of this paper is to introduce
α
,
β
-bipolar fuzzy ideals (left, lateral and right) and bi-ideals in ternary semirings by applying the definitions of belongingness
∈
and quasi-coincidence (
q
) of a bipolar fuzzy point with a bipolar fuzzy set. In this work, upper parts and lower parts of bipolar fuzzy set in ternary semirings are also discussed. Regular and intra-regular ternary semirings in terms of
∈
,
∈
∨
q
-bipolar fuzzy (left, lateral and right) ideals and
∈
,
∈
∨
q
-bipolar fuzzy bi-ideals are characterized.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Fuzzy sets</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rings (mathematics)</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFb_gKeA59XZmU12402KVqEgSO_LmkxKStvE3ebQ_HoTI3jz9GB47zHvE-JWwb0CMA9RAyktAUGCIpXL_kzMlAUjgQDPxQyRrKQM6FJcxbgFIKO0nonHD950Ox-SI4eDD6ck8r4O9WETk_owHvcxaarks26b0VV1fX9K6pL9Ll6Li2oQvvnVuVi_PK8Xr3L1vnxbPK1kQRkdpc0hzanS1mMGacaA5EvA1FtUqdVY-CzPCq0LtAVXWhkAz5BzSga5ZJqLu6m2Dc1Xx_Hotk03_LqLDrUhY7UxdnDh5CpCE2PgyrWh3g-DnAI3InITIjcgcj-IXD-EaArFdpzM4a_6n9Q3RTBoeg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Bashir, Shahida</creator><creator>Mazhar, Rabia</creator><creator>Abbas, Hasnain</creator><creator>Shabir, Muhammad</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Regular ternary semirings in terms of bipolar fuzzy ideals</title><author>Bashir, Shahida ; Mazhar, Rabia ; Abbas, Hasnain ; Shabir, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-890593f48a26056e023ad025a8215842ca696c44c28cef41700ae09e5372ede3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Fuzzy sets</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bashir, Shahida</creatorcontrib><creatorcontrib>Mazhar, Rabia</creatorcontrib><creatorcontrib>Abbas, Hasnain</creatorcontrib><creatorcontrib>Shabir, Muhammad</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashir, Shahida</au><au>Mazhar, Rabia</au><au>Abbas, Hasnain</au><au>Shabir, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regular ternary semirings in terms of bipolar fuzzy ideals</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>39</volume><issue>4</issue><artnum>319</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>The central objective of this paper is to introduce
α
,
β
-bipolar fuzzy ideals (left, lateral and right) and bi-ideals in ternary semirings by applying the definitions of belongingness
∈
and quasi-coincidence (
q
) of a bipolar fuzzy point with a bipolar fuzzy set. In this work, upper parts and lower parts of bipolar fuzzy set in ternary semirings are also discussed. Regular and intra-regular ternary semirings in terms of
∈
,
∈
∨
q
-bipolar fuzzy (left, lateral and right) ideals and
∈
,
∈
∨
q
-bipolar fuzzy bi-ideals are characterized.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-020-01319-z</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2020-12, Vol.39 (4), Article 319 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2473784778 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Applied physics Computational mathematics Computational Mathematics and Numerical Analysis Fuzzy sets Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Rings (mathematics) |
title | Regular ternary semirings in terms of bipolar fuzzy ideals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A01%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regular%20ternary%20semirings%20in%20terms%20of%20bipolar%20fuzzy%20ideals&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Bashir,%20Shahida&rft.date=2020-12-01&rft.volume=39&rft.issue=4&rft.artnum=319&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-020-01319-z&rft_dat=%3Cproquest_cross%3E2473784778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473784778&rft_id=info:pmid/&rfr_iscdi=true |