Evolution of biocoenosis through symbiosis with fitness approximation for many-tasking optimization

Memetic computing is a blooming research area, which treats memes as the fundamental building blocks of information transfer. Evolutionary multitasking is an emerging topic in memetic computation, which applies evolutionary algorithm to optimize multiple tasks at a time. A famous class of algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Memetic computing 2020-12, Vol.12 (4), p.399-417
Hauptverfasser: Liaw, Rung-Tzuo, Ting, Chuan-Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 417
container_issue 4
container_start_page 399
container_title Memetic computing
container_volume 12
creator Liaw, Rung-Tzuo
Ting, Chuan-Kang
description Memetic computing is a blooming research area, which treats memes as the fundamental building blocks of information transfer. Evolutionary multitasking is an emerging topic in memetic computation, which applies evolutionary algorithm to optimize multiple tasks at a time. A famous class of algorithms for evolutionary multitasking is the multi-factorial evolutionary algorithm (MFEA). Nevertheless, current MFEAs only consider problems with small number of tasks, resulting in a lack of effective information transfer strategy. This study proposes a framework for evolutionary multitasking, called the evolution of biocoenosis through symbiosis with fitness approximation (EBSFA). The EBSFA incorporates evolution of biocoenosis through symbiosis (EBS) with fitness approximation to ameliorate the information transfer. The improvement of EBSFA is three-fold, including (1) the adaptive control of information transfer among tasks, (2) the selection of individuals from the universal offspring pool for evaluation based on fitness approximation, and (3) an ensemble method for improving the accuracy of fitness approximation through k nearest neighbors. Experimental analysis verifies the effectiveness and efficiency of the proposed EBSFA, by comparison with an advanced single-tasking method, the covariance matrix adaptation evolution strategy (CMAES), an illustrious multitasking optimization method, the MFEA-II, and an evolutionary many-tasking method, the EBS on a set of many-tasking benchmark problems. The results show that EBSFA can gain nice solution quality and fast convergence speed. Further analysis validates the effectiveness of the proposed components on improving the information transfer.
doi_str_mv 10.1007/s12293-020-00317-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473781800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473781800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e18043d1960ef2ae701c02f40962f170d8cb0438d3024db129ff3202c5b9a16a3</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBITGN_gFMkzgXH6drmiKbxIU3iAueoH8mWsTYlSYHx68lWBDd8sWW_92w_Qi4ZXDOA_MYzRMETQEgAOMsTPCETVmTzRKDA09-6SM_JzPstxOCYFymbkHr5bndDMLajVtPK2Nqqznrjadg4O6w31O_b2D50PkzYUG1Cp7ynZd87-2na8sjV1tG27PZJKP2r6dbU9sG05us4vSBnutx5NfvJU_Jyt3xePCSrp_vHxe0qqTkTIVGsgJQ3TGSgNJYqB1YD6hREhprl0BR1FQFFwwHTpmIotOYIWM8rUbKs5FNyNerGy94G5YPc2sF1caXENOd5ERdAROGIqp313iktexffcHvJQB78lKOfMvopj35KjCQ-knwEd2vl_qT_YX0D_3l5sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473781800</pqid></control><display><type>article</type><title>Evolution of biocoenosis through symbiosis with fitness approximation for many-tasking optimization</title><source>SpringerLink Journals</source><creator>Liaw, Rung-Tzuo ; Ting, Chuan-Kang</creator><creatorcontrib>Liaw, Rung-Tzuo ; Ting, Chuan-Kang</creatorcontrib><description>Memetic computing is a blooming research area, which treats memes as the fundamental building blocks of information transfer. Evolutionary multitasking is an emerging topic in memetic computation, which applies evolutionary algorithm to optimize multiple tasks at a time. A famous class of algorithms for evolutionary multitasking is the multi-factorial evolutionary algorithm (MFEA). Nevertheless, current MFEAs only consider problems with small number of tasks, resulting in a lack of effective information transfer strategy. This study proposes a framework for evolutionary multitasking, called the evolution of biocoenosis through symbiosis with fitness approximation (EBSFA). The EBSFA incorporates evolution of biocoenosis through symbiosis (EBS) with fitness approximation to ameliorate the information transfer. The improvement of EBSFA is three-fold, including (1) the adaptive control of information transfer among tasks, (2) the selection of individuals from the universal offspring pool for evaluation based on fitness approximation, and (3) an ensemble method for improving the accuracy of fitness approximation through k nearest neighbors. Experimental analysis verifies the effectiveness and efficiency of the proposed EBSFA, by comparison with an advanced single-tasking method, the covariance matrix adaptation evolution strategy (CMAES), an illustrious multitasking optimization method, the MFEA-II, and an evolutionary many-tasking method, the EBS on a set of many-tasking benchmark problems. The results show that EBSFA can gain nice solution quality and fast convergence speed. Further analysis validates the effectiveness of the proposed components on improving the information transfer.</description><identifier>ISSN: 1865-9284</identifier><identifier>EISSN: 1865-9292</identifier><identifier>DOI: 10.1007/s12293-020-00317-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive control ; Applications of Mathematics ; Approximation ; Artificial Intelligence ; Bioinformatics ; Complex Systems ; Control ; Covariance matrix ; Engineering ; Evolutionary algorithms ; Fitness ; Genetic algorithms ; Information transfer ; Mathematical analysis ; Mathematical and Computational Engineering ; Mechatronics ; Multitasking ; Optimization ; Regular Research Paper ; Robotics ; Symbiosis</subject><ispartof>Memetic computing, 2020-12, Vol.12 (4), p.399-417</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e18043d1960ef2ae701c02f40962f170d8cb0438d3024db129ff3202c5b9a16a3</citedby><cites>FETCH-LOGICAL-c319t-e18043d1960ef2ae701c02f40962f170d8cb0438d3024db129ff3202c5b9a16a3</cites><orcidid>0000-0003-0038-7105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12293-020-00317-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12293-020-00317-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liaw, Rung-Tzuo</creatorcontrib><creatorcontrib>Ting, Chuan-Kang</creatorcontrib><title>Evolution of biocoenosis through symbiosis with fitness approximation for many-tasking optimization</title><title>Memetic computing</title><addtitle>Memetic Comp</addtitle><description>Memetic computing is a blooming research area, which treats memes as the fundamental building blocks of information transfer. Evolutionary multitasking is an emerging topic in memetic computation, which applies evolutionary algorithm to optimize multiple tasks at a time. A famous class of algorithms for evolutionary multitasking is the multi-factorial evolutionary algorithm (MFEA). Nevertheless, current MFEAs only consider problems with small number of tasks, resulting in a lack of effective information transfer strategy. This study proposes a framework for evolutionary multitasking, called the evolution of biocoenosis through symbiosis with fitness approximation (EBSFA). The EBSFA incorporates evolution of biocoenosis through symbiosis (EBS) with fitness approximation to ameliorate the information transfer. The improvement of EBSFA is three-fold, including (1) the adaptive control of information transfer among tasks, (2) the selection of individuals from the universal offspring pool for evaluation based on fitness approximation, and (3) an ensemble method for improving the accuracy of fitness approximation through k nearest neighbors. Experimental analysis verifies the effectiveness and efficiency of the proposed EBSFA, by comparison with an advanced single-tasking method, the covariance matrix adaptation evolution strategy (CMAES), an illustrious multitasking optimization method, the MFEA-II, and an evolutionary many-tasking method, the EBS on a set of many-tasking benchmark problems. The results show that EBSFA can gain nice solution quality and fast convergence speed. Further analysis validates the effectiveness of the proposed components on improving the information transfer.</description><subject>Adaptive control</subject><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Covariance matrix</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Fitness</subject><subject>Genetic algorithms</subject><subject>Information transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Multitasking</subject><subject>Optimization</subject><subject>Regular Research Paper</subject><subject>Robotics</subject><subject>Symbiosis</subject><issn>1865-9284</issn><issn>1865-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBITGN_gFMkzgXH6drmiKbxIU3iAueoH8mWsTYlSYHx68lWBDd8sWW_92w_Qi4ZXDOA_MYzRMETQEgAOMsTPCETVmTzRKDA09-6SM_JzPstxOCYFymbkHr5bndDMLajVtPK2Nqqznrjadg4O6w31O_b2D50PkzYUG1Cp7ynZd87-2na8sjV1tG27PZJKP2r6dbU9sG05us4vSBnutx5NfvJU_Jyt3xePCSrp_vHxe0qqTkTIVGsgJQ3TGSgNJYqB1YD6hREhprl0BR1FQFFwwHTpmIotOYIWM8rUbKs5FNyNerGy94G5YPc2sF1caXENOd5ERdAROGIqp313iktexffcHvJQB78lKOfMvopj35KjCQ-knwEd2vl_qT_YX0D_3l5sQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Liaw, Rung-Tzuo</creator><creator>Ting, Chuan-Kang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0038-7105</orcidid></search><sort><creationdate>20201201</creationdate><title>Evolution of biocoenosis through symbiosis with fitness approximation for many-tasking optimization</title><author>Liaw, Rung-Tzuo ; Ting, Chuan-Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e18043d1960ef2ae701c02f40962f170d8cb0438d3024db129ff3202c5b9a16a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Covariance matrix</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Fitness</topic><topic>Genetic algorithms</topic><topic>Information transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Multitasking</topic><topic>Optimization</topic><topic>Regular Research Paper</topic><topic>Robotics</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liaw, Rung-Tzuo</creatorcontrib><creatorcontrib>Ting, Chuan-Kang</creatorcontrib><collection>CrossRef</collection><jtitle>Memetic computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liaw, Rung-Tzuo</au><au>Ting, Chuan-Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of biocoenosis through symbiosis with fitness approximation for many-tasking optimization</atitle><jtitle>Memetic computing</jtitle><stitle>Memetic Comp</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>12</volume><issue>4</issue><spage>399</spage><epage>417</epage><pages>399-417</pages><issn>1865-9284</issn><eissn>1865-9292</eissn><abstract>Memetic computing is a blooming research area, which treats memes as the fundamental building blocks of information transfer. Evolutionary multitasking is an emerging topic in memetic computation, which applies evolutionary algorithm to optimize multiple tasks at a time. A famous class of algorithms for evolutionary multitasking is the multi-factorial evolutionary algorithm (MFEA). Nevertheless, current MFEAs only consider problems with small number of tasks, resulting in a lack of effective information transfer strategy. This study proposes a framework for evolutionary multitasking, called the evolution of biocoenosis through symbiosis with fitness approximation (EBSFA). The EBSFA incorporates evolution of biocoenosis through symbiosis (EBS) with fitness approximation to ameliorate the information transfer. The improvement of EBSFA is three-fold, including (1) the adaptive control of information transfer among tasks, (2) the selection of individuals from the universal offspring pool for evaluation based on fitness approximation, and (3) an ensemble method for improving the accuracy of fitness approximation through k nearest neighbors. Experimental analysis verifies the effectiveness and efficiency of the proposed EBSFA, by comparison with an advanced single-tasking method, the covariance matrix adaptation evolution strategy (CMAES), an illustrious multitasking optimization method, the MFEA-II, and an evolutionary many-tasking method, the EBS on a set of many-tasking benchmark problems. The results show that EBSFA can gain nice solution quality and fast convergence speed. Further analysis validates the effectiveness of the proposed components on improving the information transfer.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12293-020-00317-2</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0038-7105</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1865-9284
ispartof Memetic computing, 2020-12, Vol.12 (4), p.399-417
issn 1865-9284
1865-9292
language eng
recordid cdi_proquest_journals_2473781800
source SpringerLink Journals
subjects Adaptive control
Applications of Mathematics
Approximation
Artificial Intelligence
Bioinformatics
Complex Systems
Control
Covariance matrix
Engineering
Evolutionary algorithms
Fitness
Genetic algorithms
Information transfer
Mathematical analysis
Mathematical and Computational Engineering
Mechatronics
Multitasking
Optimization
Regular Research Paper
Robotics
Symbiosis
title Evolution of biocoenosis through symbiosis with fitness approximation for many-tasking optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20biocoenosis%20through%20symbiosis%20with%20fitness%20approximation%20for%20many-tasking%20optimization&rft.jtitle=Memetic%20computing&rft.au=Liaw,%20Rung-Tzuo&rft.date=2020-12-01&rft.volume=12&rft.issue=4&rft.spage=399&rft.epage=417&rft.pages=399-417&rft.issn=1865-9284&rft.eissn=1865-9292&rft_id=info:doi/10.1007/s12293-020-00317-2&rft_dat=%3Cproquest_cross%3E2473781800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473781800&rft_id=info:pmid/&rfr_iscdi=true