Evolution of biocoenosis through symbiosis with fitness approximation for many-tasking optimization
Memetic computing is a blooming research area, which treats memes as the fundamental building blocks of information transfer. Evolutionary multitasking is an emerging topic in memetic computation, which applies evolutionary algorithm to optimize multiple tasks at a time. A famous class of algorithms...
Gespeichert in:
Veröffentlicht in: | Memetic computing 2020-12, Vol.12 (4), p.399-417 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 417 |
---|---|
container_issue | 4 |
container_start_page | 399 |
container_title | Memetic computing |
container_volume | 12 |
creator | Liaw, Rung-Tzuo Ting, Chuan-Kang |
description | Memetic computing is a blooming research area, which treats memes as the fundamental building blocks of information transfer. Evolutionary multitasking is an emerging topic in memetic computation, which applies evolutionary algorithm to optimize multiple tasks at a time. A famous class of algorithms for evolutionary multitasking is the multi-factorial evolutionary algorithm (MFEA). Nevertheless, current MFEAs only consider problems with small number of tasks, resulting in a lack of effective information transfer strategy. This study proposes a framework for evolutionary multitasking, called the evolution of biocoenosis through symbiosis with fitness approximation (EBSFA). The EBSFA incorporates evolution of biocoenosis through symbiosis (EBS) with fitness approximation to ameliorate the information transfer. The improvement of EBSFA is three-fold, including (1) the adaptive control of information transfer among tasks, (2) the selection of individuals from the universal offspring pool for evaluation based on fitness approximation, and (3) an ensemble method for improving the accuracy of fitness approximation through
k
nearest neighbors. Experimental analysis verifies the effectiveness and efficiency of the proposed EBSFA, by comparison with an advanced single-tasking method, the covariance matrix adaptation evolution strategy (CMAES), an illustrious multitasking optimization method, the MFEA-II, and an evolutionary many-tasking method, the EBS on a set of many-tasking benchmark problems. The results show that EBSFA can gain nice solution quality and fast convergence speed. Further analysis validates the effectiveness of the proposed components on improving the information transfer. |
doi_str_mv | 10.1007/s12293-020-00317-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473781800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473781800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e18043d1960ef2ae701c02f40962f170d8cb0438d3024db129ff3202c5b9a16a3</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBITGN_gFMkzgXH6drmiKbxIU3iAueoH8mWsTYlSYHx68lWBDd8sWW_92w_Qi4ZXDOA_MYzRMETQEgAOMsTPCETVmTzRKDA09-6SM_JzPstxOCYFymbkHr5bndDMLajVtPK2Nqqznrjadg4O6w31O_b2D50PkzYUG1Cp7ynZd87-2na8sjV1tG27PZJKP2r6dbU9sG05us4vSBnutx5NfvJU_Jyt3xePCSrp_vHxe0qqTkTIVGsgJQ3TGSgNJYqB1YD6hREhprl0BR1FQFFwwHTpmIotOYIWM8rUbKs5FNyNerGy94G5YPc2sF1caXENOd5ERdAROGIqp313iktexffcHvJQB78lKOfMvopj35KjCQ-knwEd2vl_qT_YX0D_3l5sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473781800</pqid></control><display><type>article</type><title>Evolution of biocoenosis through symbiosis with fitness approximation for many-tasking optimization</title><source>SpringerLink Journals</source><creator>Liaw, Rung-Tzuo ; Ting, Chuan-Kang</creator><creatorcontrib>Liaw, Rung-Tzuo ; Ting, Chuan-Kang</creatorcontrib><description>Memetic computing is a blooming research area, which treats memes as the fundamental building blocks of information transfer. Evolutionary multitasking is an emerging topic in memetic computation, which applies evolutionary algorithm to optimize multiple tasks at a time. A famous class of algorithms for evolutionary multitasking is the multi-factorial evolutionary algorithm (MFEA). Nevertheless, current MFEAs only consider problems with small number of tasks, resulting in a lack of effective information transfer strategy. This study proposes a framework for evolutionary multitasking, called the evolution of biocoenosis through symbiosis with fitness approximation (EBSFA). The EBSFA incorporates evolution of biocoenosis through symbiosis (EBS) with fitness approximation to ameliorate the information transfer. The improvement of EBSFA is three-fold, including (1) the adaptive control of information transfer among tasks, (2) the selection of individuals from the universal offspring pool for evaluation based on fitness approximation, and (3) an ensemble method for improving the accuracy of fitness approximation through
k
nearest neighbors. Experimental analysis verifies the effectiveness and efficiency of the proposed EBSFA, by comparison with an advanced single-tasking method, the covariance matrix adaptation evolution strategy (CMAES), an illustrious multitasking optimization method, the MFEA-II, and an evolutionary many-tasking method, the EBS on a set of many-tasking benchmark problems. The results show that EBSFA can gain nice solution quality and fast convergence speed. Further analysis validates the effectiveness of the proposed components on improving the information transfer.</description><identifier>ISSN: 1865-9284</identifier><identifier>EISSN: 1865-9292</identifier><identifier>DOI: 10.1007/s12293-020-00317-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive control ; Applications of Mathematics ; Approximation ; Artificial Intelligence ; Bioinformatics ; Complex Systems ; Control ; Covariance matrix ; Engineering ; Evolutionary algorithms ; Fitness ; Genetic algorithms ; Information transfer ; Mathematical analysis ; Mathematical and Computational Engineering ; Mechatronics ; Multitasking ; Optimization ; Regular Research Paper ; Robotics ; Symbiosis</subject><ispartof>Memetic computing, 2020-12, Vol.12 (4), p.399-417</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e18043d1960ef2ae701c02f40962f170d8cb0438d3024db129ff3202c5b9a16a3</citedby><cites>FETCH-LOGICAL-c319t-e18043d1960ef2ae701c02f40962f170d8cb0438d3024db129ff3202c5b9a16a3</cites><orcidid>0000-0003-0038-7105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12293-020-00317-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12293-020-00317-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liaw, Rung-Tzuo</creatorcontrib><creatorcontrib>Ting, Chuan-Kang</creatorcontrib><title>Evolution of biocoenosis through symbiosis with fitness approximation for many-tasking optimization</title><title>Memetic computing</title><addtitle>Memetic Comp</addtitle><description>Memetic computing is a blooming research area, which treats memes as the fundamental building blocks of information transfer. Evolutionary multitasking is an emerging topic in memetic computation, which applies evolutionary algorithm to optimize multiple tasks at a time. A famous class of algorithms for evolutionary multitasking is the multi-factorial evolutionary algorithm (MFEA). Nevertheless, current MFEAs only consider problems with small number of tasks, resulting in a lack of effective information transfer strategy. This study proposes a framework for evolutionary multitasking, called the evolution of biocoenosis through symbiosis with fitness approximation (EBSFA). The EBSFA incorporates evolution of biocoenosis through symbiosis (EBS) with fitness approximation to ameliorate the information transfer. The improvement of EBSFA is three-fold, including (1) the adaptive control of information transfer among tasks, (2) the selection of individuals from the universal offspring pool for evaluation based on fitness approximation, and (3) an ensemble method for improving the accuracy of fitness approximation through
k
nearest neighbors. Experimental analysis verifies the effectiveness and efficiency of the proposed EBSFA, by comparison with an advanced single-tasking method, the covariance matrix adaptation evolution strategy (CMAES), an illustrious multitasking optimization method, the MFEA-II, and an evolutionary many-tasking method, the EBS on a set of many-tasking benchmark problems. The results show that EBSFA can gain nice solution quality and fast convergence speed. Further analysis validates the effectiveness of the proposed components on improving the information transfer.</description><subject>Adaptive control</subject><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Covariance matrix</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Fitness</subject><subject>Genetic algorithms</subject><subject>Information transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Multitasking</subject><subject>Optimization</subject><subject>Regular Research Paper</subject><subject>Robotics</subject><subject>Symbiosis</subject><issn>1865-9284</issn><issn>1865-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBITGN_gFMkzgXH6drmiKbxIU3iAueoH8mWsTYlSYHx68lWBDd8sWW_92w_Qi4ZXDOA_MYzRMETQEgAOMsTPCETVmTzRKDA09-6SM_JzPstxOCYFymbkHr5bndDMLajVtPK2Nqqznrjadg4O6w31O_b2D50PkzYUG1Cp7ynZd87-2na8sjV1tG27PZJKP2r6dbU9sG05us4vSBnutx5NfvJU_Jyt3xePCSrp_vHxe0qqTkTIVGsgJQ3TGSgNJYqB1YD6hREhprl0BR1FQFFwwHTpmIotOYIWM8rUbKs5FNyNerGy94G5YPc2sF1caXENOd5ERdAROGIqp313iktexffcHvJQB78lKOfMvopj35KjCQ-knwEd2vl_qT_YX0D_3l5sQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Liaw, Rung-Tzuo</creator><creator>Ting, Chuan-Kang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0038-7105</orcidid></search><sort><creationdate>20201201</creationdate><title>Evolution of biocoenosis through symbiosis with fitness approximation for many-tasking optimization</title><author>Liaw, Rung-Tzuo ; Ting, Chuan-Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e18043d1960ef2ae701c02f40962f170d8cb0438d3024db129ff3202c5b9a16a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Covariance matrix</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Fitness</topic><topic>Genetic algorithms</topic><topic>Information transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Multitasking</topic><topic>Optimization</topic><topic>Regular Research Paper</topic><topic>Robotics</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liaw, Rung-Tzuo</creatorcontrib><creatorcontrib>Ting, Chuan-Kang</creatorcontrib><collection>CrossRef</collection><jtitle>Memetic computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liaw, Rung-Tzuo</au><au>Ting, Chuan-Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of biocoenosis through symbiosis with fitness approximation for many-tasking optimization</atitle><jtitle>Memetic computing</jtitle><stitle>Memetic Comp</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>12</volume><issue>4</issue><spage>399</spage><epage>417</epage><pages>399-417</pages><issn>1865-9284</issn><eissn>1865-9292</eissn><abstract>Memetic computing is a blooming research area, which treats memes as the fundamental building blocks of information transfer. Evolutionary multitasking is an emerging topic in memetic computation, which applies evolutionary algorithm to optimize multiple tasks at a time. A famous class of algorithms for evolutionary multitasking is the multi-factorial evolutionary algorithm (MFEA). Nevertheless, current MFEAs only consider problems with small number of tasks, resulting in a lack of effective information transfer strategy. This study proposes a framework for evolutionary multitasking, called the evolution of biocoenosis through symbiosis with fitness approximation (EBSFA). The EBSFA incorporates evolution of biocoenosis through symbiosis (EBS) with fitness approximation to ameliorate the information transfer. The improvement of EBSFA is three-fold, including (1) the adaptive control of information transfer among tasks, (2) the selection of individuals from the universal offspring pool for evaluation based on fitness approximation, and (3) an ensemble method for improving the accuracy of fitness approximation through
k
nearest neighbors. Experimental analysis verifies the effectiveness and efficiency of the proposed EBSFA, by comparison with an advanced single-tasking method, the covariance matrix adaptation evolution strategy (CMAES), an illustrious multitasking optimization method, the MFEA-II, and an evolutionary many-tasking method, the EBS on a set of many-tasking benchmark problems. The results show that EBSFA can gain nice solution quality and fast convergence speed. Further analysis validates the effectiveness of the proposed components on improving the information transfer.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12293-020-00317-2</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0038-7105</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1865-9284 |
ispartof | Memetic computing, 2020-12, Vol.12 (4), p.399-417 |
issn | 1865-9284 1865-9292 |
language | eng |
recordid | cdi_proquest_journals_2473781800 |
source | SpringerLink Journals |
subjects | Adaptive control Applications of Mathematics Approximation Artificial Intelligence Bioinformatics Complex Systems Control Covariance matrix Engineering Evolutionary algorithms Fitness Genetic algorithms Information transfer Mathematical analysis Mathematical and Computational Engineering Mechatronics Multitasking Optimization Regular Research Paper Robotics Symbiosis |
title | Evolution of biocoenosis through symbiosis with fitness approximation for many-tasking optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20biocoenosis%20through%20symbiosis%20with%20fitness%20approximation%20for%20many-tasking%20optimization&rft.jtitle=Memetic%20computing&rft.au=Liaw,%20Rung-Tzuo&rft.date=2020-12-01&rft.volume=12&rft.issue=4&rft.spage=399&rft.epage=417&rft.pages=399-417&rft.issn=1865-9284&rft.eissn=1865-9292&rft_id=info:doi/10.1007/s12293-020-00317-2&rft_dat=%3Cproquest_cross%3E2473781800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473781800&rft_id=info:pmid/&rfr_iscdi=true |