Detection of epileptical seizures based on alpha band statistical features

Significant research has been going in the field of automated epileptical seizure detection using Electroencephalogram (EEG) data. The EEG signal consists of different frequency bands, which correspond to the different emotional and mental activities of the humans. Most of the research work uses the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications 2020-11, Vol.115 (2), p.909-925
Hauptverfasser: Sameer, Mustafa, Gupta, Bharat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 925
container_issue 2
container_start_page 909
container_title Wireless personal communications
container_volume 115
creator Sameer, Mustafa
Gupta, Bharat
description Significant research has been going in the field of automated epileptical seizure detection using Electroencephalogram (EEG) data. The EEG signal consists of different frequency bands, which correspond to the different emotional and mental activities of the humans. Most of the research work uses the whole frequency spectrum for the detection of seizures. In this paper, first time the proposed automated system utilizing machine learning technique using only alpha band (8–12 Hz). This paper uses Short-time Fourier transform (STFT) due to its high speed and less complexity in hardware implementation to convert EEG data in time–frequency (t–f) plane. As brain oscillations of a person vary in different health conditions, four statistical features have been extracted from t–f plane of alpha band. The detection performance of the features of alpha band has been analyzed on six classifiers using tenfold cross-validation which shows that the Random Forest (RF) classifier gives the best performance among different classifiers for most of the experiments performed. This study has achieved the best classification accuracy of 98% and ROC analysis revealed maximum Area Under Curve (AUC) of 1 to distinguish the seizures and healthy. Hence, the statistical features of the alpha band depict to be a potential biomarker for the real time detection system.
doi_str_mv 10.1007/s11277-020-07542-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473780802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473780802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1d4743aa1080db2bb2de71b595bfc2f4af5fd4401f9566b9b389c040afc6f4d23</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI7-AVcF19GbV9MsZXwz4EbBXUiaRDvUtiaZhf56M1Zw5ypcOOcLHIROCZwTAHmRCKFSYqCAQQpOsdhDCyIkxQ3jL_toAYoqXFNCD9FRShuAoim6QA9XPvs2d-NQjaHyU9f7KXet6avku69t9KmyJnlXFcD005sp5-CqlE3u0gwGb_IOPEYHwfTJn_y-S_R8c_20usPrx9v71eUat4yojInjkjNjCDTgLLWWOi-JFUrY0NLATRDBcQ4kKFHXVlnWqBY4mNDWgTvKluhs3p3i-LH1KevNuI1D-VJTLplsyvCOojPVxjGl6IOeYvdu4qcmoHfN9NxMl2b6p5kWRWKzlAo8vPr4N_2P9Q27cG-V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473780802</pqid></control><display><type>article</type><title>Detection of epileptical seizures based on alpha band statistical features</title><source>SpringerNature Journals</source><creator>Sameer, Mustafa ; Gupta, Bharat</creator><creatorcontrib>Sameer, Mustafa ; Gupta, Bharat</creatorcontrib><description>Significant research has been going in the field of automated epileptical seizure detection using Electroencephalogram (EEG) data. The EEG signal consists of different frequency bands, which correspond to the different emotional and mental activities of the humans. Most of the research work uses the whole frequency spectrum for the detection of seizures. In this paper, first time the proposed automated system utilizing machine learning technique using only alpha band (8–12 Hz). This paper uses Short-time Fourier transform (STFT) due to its high speed and less complexity in hardware implementation to convert EEG data in time–frequency (t–f) plane. As brain oscillations of a person vary in different health conditions, four statistical features have been extracted from t–f plane of alpha band. The detection performance of the features of alpha band has been analyzed on six classifiers using tenfold cross-validation which shows that the Random Forest (RF) classifier gives the best performance among different classifiers for most of the experiments performed. This study has achieved the best classification accuracy of 98% and ROC analysis revealed maximum Area Under Curve (AUC) of 1 to distinguish the seizures and healthy. Hence, the statistical features of the alpha band depict to be a potential biomarker for the real time detection system.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-020-07542-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automation ; Biomarkers ; Classifiers ; Communications Engineering ; Computer Communication Networks ; Electroencephalography ; Engineering ; Feature extraction ; Fourier transforms ; Frequencies ; Frequency spectrum ; Machine learning ; Networks ; Seizures ; Signal,Image and Speech Processing</subject><ispartof>Wireless personal communications, 2020-11, Vol.115 (2), p.909-925</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020. corrected publication 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020. corrected publication 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1d4743aa1080db2bb2de71b595bfc2f4af5fd4401f9566b9b389c040afc6f4d23</citedby><cites>FETCH-LOGICAL-c319t-1d4743aa1080db2bb2de71b595bfc2f4af5fd4401f9566b9b389c040afc6f4d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-020-07542-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-020-07542-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sameer, Mustafa</creatorcontrib><creatorcontrib>Gupta, Bharat</creatorcontrib><title>Detection of epileptical seizures based on alpha band statistical features</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>Significant research has been going in the field of automated epileptical seizure detection using Electroencephalogram (EEG) data. The EEG signal consists of different frequency bands, which correspond to the different emotional and mental activities of the humans. Most of the research work uses the whole frequency spectrum for the detection of seizures. In this paper, first time the proposed automated system utilizing machine learning technique using only alpha band (8–12 Hz). This paper uses Short-time Fourier transform (STFT) due to its high speed and less complexity in hardware implementation to convert EEG data in time–frequency (t–f) plane. As brain oscillations of a person vary in different health conditions, four statistical features have been extracted from t–f plane of alpha band. The detection performance of the features of alpha band has been analyzed on six classifiers using tenfold cross-validation which shows that the Random Forest (RF) classifier gives the best performance among different classifiers for most of the experiments performed. This study has achieved the best classification accuracy of 98% and ROC analysis revealed maximum Area Under Curve (AUC) of 1 to distinguish the seizures and healthy. Hence, the statistical features of the alpha band depict to be a potential biomarker for the real time detection system.</description><subject>Automation</subject><subject>Biomarkers</subject><subject>Classifiers</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Electroencephalography</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Frequencies</subject><subject>Frequency spectrum</subject><subject>Machine learning</subject><subject>Networks</subject><subject>Seizures</subject><subject>Signal,Image and Speech Processing</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAURoMoOI7-AVcF19GbV9MsZXwz4EbBXUiaRDvUtiaZhf56M1Zw5ypcOOcLHIROCZwTAHmRCKFSYqCAQQpOsdhDCyIkxQ3jL_toAYoqXFNCD9FRShuAoim6QA9XPvs2d-NQjaHyU9f7KXet6avku69t9KmyJnlXFcD005sp5-CqlE3u0gwGb_IOPEYHwfTJn_y-S_R8c_20usPrx9v71eUat4yojInjkjNjCDTgLLWWOi-JFUrY0NLATRDBcQ4kKFHXVlnWqBY4mNDWgTvKluhs3p3i-LH1KevNuI1D-VJTLplsyvCOojPVxjGl6IOeYvdu4qcmoHfN9NxMl2b6p5kWRWKzlAo8vPr4N_2P9Q27cG-V</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Sameer, Mustafa</creator><creator>Gupta, Bharat</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Detection of epileptical seizures based on alpha band statistical features</title><author>Sameer, Mustafa ; Gupta, Bharat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1d4743aa1080db2bb2de71b595bfc2f4af5fd4401f9566b9b389c040afc6f4d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation</topic><topic>Biomarkers</topic><topic>Classifiers</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Electroencephalography</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Frequencies</topic><topic>Frequency spectrum</topic><topic>Machine learning</topic><topic>Networks</topic><topic>Seizures</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sameer, Mustafa</creatorcontrib><creatorcontrib>Gupta, Bharat</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sameer, Mustafa</au><au>Gupta, Bharat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of epileptical seizures based on alpha band statistical features</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>115</volume><issue>2</issue><spage>909</spage><epage>925</epage><pages>909-925</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>Significant research has been going in the field of automated epileptical seizure detection using Electroencephalogram (EEG) data. The EEG signal consists of different frequency bands, which correspond to the different emotional and mental activities of the humans. Most of the research work uses the whole frequency spectrum for the detection of seizures. In this paper, first time the proposed automated system utilizing machine learning technique using only alpha band (8–12 Hz). This paper uses Short-time Fourier transform (STFT) due to its high speed and less complexity in hardware implementation to convert EEG data in time–frequency (t–f) plane. As brain oscillations of a person vary in different health conditions, four statistical features have been extracted from t–f plane of alpha band. The detection performance of the features of alpha band has been analyzed on six classifiers using tenfold cross-validation which shows that the Random Forest (RF) classifier gives the best performance among different classifiers for most of the experiments performed. This study has achieved the best classification accuracy of 98% and ROC analysis revealed maximum Area Under Curve (AUC) of 1 to distinguish the seizures and healthy. Hence, the statistical features of the alpha band depict to be a potential biomarker for the real time detection system.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-020-07542-5</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0929-6212
ispartof Wireless personal communications, 2020-11, Vol.115 (2), p.909-925
issn 0929-6212
1572-834X
language eng
recordid cdi_proquest_journals_2473780802
source SpringerNature Journals
subjects Automation
Biomarkers
Classifiers
Communications Engineering
Computer Communication Networks
Electroencephalography
Engineering
Feature extraction
Fourier transforms
Frequencies
Frequency spectrum
Machine learning
Networks
Seizures
Signal,Image and Speech Processing
title Detection of epileptical seizures based on alpha band statistical features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20epileptical%20seizures%20based%20on%20alpha%20band%20statistical%20features&rft.jtitle=Wireless%20personal%20communications&rft.au=Sameer,%20Mustafa&rft.date=2020-11-01&rft.volume=115&rft.issue=2&rft.spage=909&rft.epage=925&rft.pages=909-925&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-020-07542-5&rft_dat=%3Cproquest_cross%3E2473780802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473780802&rft_id=info:pmid/&rfr_iscdi=true