Detection of epileptical seizures based on alpha band statistical features
Significant research has been going in the field of automated epileptical seizure detection using Electroencephalogram (EEG) data. The EEG signal consists of different frequency bands, which correspond to the different emotional and mental activities of the humans. Most of the research work uses the...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2020-11, Vol.115 (2), p.909-925 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 925 |
---|---|
container_issue | 2 |
container_start_page | 909 |
container_title | Wireless personal communications |
container_volume | 115 |
creator | Sameer, Mustafa Gupta, Bharat |
description | Significant research has been going in the field of automated epileptical seizure detection using Electroencephalogram (EEG) data. The EEG signal consists of different frequency bands, which correspond to the different emotional and mental activities of the humans. Most of the research work uses the whole frequency spectrum for the detection of seizures. In this paper, first time the proposed automated system utilizing machine learning technique using only alpha band (8–12 Hz). This paper uses Short-time Fourier transform (STFT) due to its high speed and less complexity in hardware implementation to convert EEG data in time–frequency (t–f) plane. As brain oscillations of a person vary in different health conditions, four statistical features have been extracted from t–f plane of alpha band. The detection performance of the features of alpha band has been analyzed on six classifiers using tenfold cross-validation which shows that the Random Forest (RF) classifier gives the best performance among different classifiers for most of the experiments performed. This study has achieved the best classification accuracy of 98% and ROC analysis revealed maximum Area Under Curve (AUC) of 1 to distinguish the seizures and healthy. Hence, the statistical features of the alpha band depict to be a potential biomarker for the real time detection system. |
doi_str_mv | 10.1007/s11277-020-07542-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473780802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473780802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1d4743aa1080db2bb2de71b595bfc2f4af5fd4401f9566b9b389c040afc6f4d23</originalsourceid><addsrcrecordid>eNp9kEtLxDAURoMoOI7-AVcF19GbV9MsZXwz4EbBXUiaRDvUtiaZhf56M1Zw5ypcOOcLHIROCZwTAHmRCKFSYqCAQQpOsdhDCyIkxQ3jL_toAYoqXFNCD9FRShuAoim6QA9XPvs2d-NQjaHyU9f7KXet6avku69t9KmyJnlXFcD005sp5-CqlE3u0gwGb_IOPEYHwfTJn_y-S_R8c_20usPrx9v71eUat4yojInjkjNjCDTgLLWWOi-JFUrY0NLATRDBcQ4kKFHXVlnWqBY4mNDWgTvKluhs3p3i-LH1KevNuI1D-VJTLplsyvCOojPVxjGl6IOeYvdu4qcmoHfN9NxMl2b6p5kWRWKzlAo8vPr4N_2P9Q27cG-V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473780802</pqid></control><display><type>article</type><title>Detection of epileptical seizures based on alpha band statistical features</title><source>SpringerNature Journals</source><creator>Sameer, Mustafa ; Gupta, Bharat</creator><creatorcontrib>Sameer, Mustafa ; Gupta, Bharat</creatorcontrib><description>Significant research has been going in the field of automated epileptical seizure detection using Electroencephalogram (EEG) data. The EEG signal consists of different frequency bands, which correspond to the different emotional and mental activities of the humans. Most of the research work uses the whole frequency spectrum for the detection of seizures. In this paper, first time the proposed automated system utilizing machine learning technique using only alpha band (8–12 Hz). This paper uses Short-time Fourier transform (STFT) due to its high speed and less complexity in hardware implementation to convert EEG data in time–frequency (t–f) plane. As brain oscillations of a person vary in different health conditions, four statistical features have been extracted from t–f plane of alpha band. The detection performance of the features of alpha band has been analyzed on six classifiers using tenfold cross-validation which shows that the Random Forest (RF) classifier gives the best performance among different classifiers for most of the experiments performed. This study has achieved the best classification accuracy of 98% and ROC analysis revealed maximum Area Under Curve (AUC) of 1 to distinguish the seizures and healthy. Hence, the statistical features of the alpha band depict to be a potential biomarker for the real time detection system.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-020-07542-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automation ; Biomarkers ; Classifiers ; Communications Engineering ; Computer Communication Networks ; Electroencephalography ; Engineering ; Feature extraction ; Fourier transforms ; Frequencies ; Frequency spectrum ; Machine learning ; Networks ; Seizures ; Signal,Image and Speech Processing</subject><ispartof>Wireless personal communications, 2020-11, Vol.115 (2), p.909-925</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020. corrected publication 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020. corrected publication 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1d4743aa1080db2bb2de71b595bfc2f4af5fd4401f9566b9b389c040afc6f4d23</citedby><cites>FETCH-LOGICAL-c319t-1d4743aa1080db2bb2de71b595bfc2f4af5fd4401f9566b9b389c040afc6f4d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-020-07542-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-020-07542-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sameer, Mustafa</creatorcontrib><creatorcontrib>Gupta, Bharat</creatorcontrib><title>Detection of epileptical seizures based on alpha band statistical features</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>Significant research has been going in the field of automated epileptical seizure detection using Electroencephalogram (EEG) data. The EEG signal consists of different frequency bands, which correspond to the different emotional and mental activities of the humans. Most of the research work uses the whole frequency spectrum for the detection of seizures. In this paper, first time the proposed automated system utilizing machine learning technique using only alpha band (8–12 Hz). This paper uses Short-time Fourier transform (STFT) due to its high speed and less complexity in hardware implementation to convert EEG data in time–frequency (t–f) plane. As brain oscillations of a person vary in different health conditions, four statistical features have been extracted from t–f plane of alpha band. The detection performance of the features of alpha band has been analyzed on six classifiers using tenfold cross-validation which shows that the Random Forest (RF) classifier gives the best performance among different classifiers for most of the experiments performed. This study has achieved the best classification accuracy of 98% and ROC analysis revealed maximum Area Under Curve (AUC) of 1 to distinguish the seizures and healthy. Hence, the statistical features of the alpha band depict to be a potential biomarker for the real time detection system.</description><subject>Automation</subject><subject>Biomarkers</subject><subject>Classifiers</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Electroencephalography</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Frequencies</subject><subject>Frequency spectrum</subject><subject>Machine learning</subject><subject>Networks</subject><subject>Seizures</subject><subject>Signal,Image and Speech Processing</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAURoMoOI7-AVcF19GbV9MsZXwz4EbBXUiaRDvUtiaZhf56M1Zw5ypcOOcLHIROCZwTAHmRCKFSYqCAQQpOsdhDCyIkxQ3jL_toAYoqXFNCD9FRShuAoim6QA9XPvs2d-NQjaHyU9f7KXet6avku69t9KmyJnlXFcD005sp5-CqlE3u0gwGb_IOPEYHwfTJn_y-S_R8c_20usPrx9v71eUat4yojInjkjNjCDTgLLWWOi-JFUrY0NLATRDBcQ4kKFHXVlnWqBY4mNDWgTvKluhs3p3i-LH1KevNuI1D-VJTLplsyvCOojPVxjGl6IOeYvdu4qcmoHfN9NxMl2b6p5kWRWKzlAo8vPr4N_2P9Q27cG-V</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Sameer, Mustafa</creator><creator>Gupta, Bharat</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Detection of epileptical seizures based on alpha band statistical features</title><author>Sameer, Mustafa ; Gupta, Bharat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1d4743aa1080db2bb2de71b595bfc2f4af5fd4401f9566b9b389c040afc6f4d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automation</topic><topic>Biomarkers</topic><topic>Classifiers</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Electroencephalography</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Frequencies</topic><topic>Frequency spectrum</topic><topic>Machine learning</topic><topic>Networks</topic><topic>Seizures</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sameer, Mustafa</creatorcontrib><creatorcontrib>Gupta, Bharat</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sameer, Mustafa</au><au>Gupta, Bharat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of epileptical seizures based on alpha band statistical features</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>115</volume><issue>2</issue><spage>909</spage><epage>925</epage><pages>909-925</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>Significant research has been going in the field of automated epileptical seizure detection using Electroencephalogram (EEG) data. The EEG signal consists of different frequency bands, which correspond to the different emotional and mental activities of the humans. Most of the research work uses the whole frequency spectrum for the detection of seizures. In this paper, first time the proposed automated system utilizing machine learning technique using only alpha band (8–12 Hz). This paper uses Short-time Fourier transform (STFT) due to its high speed and less complexity in hardware implementation to convert EEG data in time–frequency (t–f) plane. As brain oscillations of a person vary in different health conditions, four statistical features have been extracted from t–f plane of alpha band. The detection performance of the features of alpha band has been analyzed on six classifiers using tenfold cross-validation which shows that the Random Forest (RF) classifier gives the best performance among different classifiers for most of the experiments performed. This study has achieved the best classification accuracy of 98% and ROC analysis revealed maximum Area Under Curve (AUC) of 1 to distinguish the seizures and healthy. Hence, the statistical features of the alpha band depict to be a potential biomarker for the real time detection system.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-020-07542-5</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-6212 |
ispartof | Wireless personal communications, 2020-11, Vol.115 (2), p.909-925 |
issn | 0929-6212 1572-834X |
language | eng |
recordid | cdi_proquest_journals_2473780802 |
source | SpringerNature Journals |
subjects | Automation Biomarkers Classifiers Communications Engineering Computer Communication Networks Electroencephalography Engineering Feature extraction Fourier transforms Frequencies Frequency spectrum Machine learning Networks Seizures Signal,Image and Speech Processing |
title | Detection of epileptical seizures based on alpha band statistical features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20epileptical%20seizures%20based%20on%20alpha%20band%20statistical%20features&rft.jtitle=Wireless%20personal%20communications&rft.au=Sameer,%20Mustafa&rft.date=2020-11-01&rft.volume=115&rft.issue=2&rft.spage=909&rft.epage=925&rft.pages=909-925&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-020-07542-5&rft_dat=%3Cproquest_cross%3E2473780802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473780802&rft_id=info:pmid/&rfr_iscdi=true |