Fingerprinting Based Indoor Localization Considering the Dynamic Nature of Wi-Fi Signals
Current localization techniques in outdoors cannot work well in indoors. Wi-Fi fingerprinting technique is an emerging localization technique for indoor environments. However in this technique, the dynamic nature of WiFi signals affects the accuracy of the measurements. In this paper, we use affinit...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2020-11, Vol.115 (2), p.1445-1464 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1464 |
---|---|
container_issue | 2 |
container_start_page | 1445 |
container_title | Wireless personal communications |
container_volume | 115 |
creator | Alikhani, Nasim Moghtadaiee, Vahideh Ghorashi, Seyed Ali |
description | Current localization techniques in outdoors cannot work well in indoors. Wi-Fi fingerprinting technique is an emerging localization technique for indoor environments. However in this technique, the dynamic nature of WiFi signals affects the accuracy of the measurements. In this paper, we use affinity propagation clustering method to decrease the computation complexity in location estimation. Then, we use the least variance of Received Signal Strength (RSS) measured among Access Points (APs) in each cluster. Also we assign lower weights to altering APs for each point in a cluster, to represent the level of similarity to Test Point (TP) by considering the dynamic nature of signals in indoor environments. A method for updating the radio map and improving the results is then proposed to decrease the cost of constructing the radio map. Simulation results show that the proposed method has 22.5% improvement in average in localization results, considering one altering AP in the layout, compared to the case when only RSS subset sampling is considered for localization because of altering APs. |
doi_str_mv | 10.1007/s11277-020-07636-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473780748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473780748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3d2650ca0347e58cde9c543962039d3b9da1fea8f584c846e01f244bde34c46d3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOH4mTEQqFShUMgOhmubZTXLUx2OlQfj0OQWJjuhve59Xdg9A5hUsKIK8SpUxKAgwIyJKXBA7QiBaSkYqLxSEaQc1qUjLKjtFJSmuAjNVshBZT365c_Ii-7fKGb3RyFs9aG0LE82D0xn_pzocWT0KbvHWxT3XvDt_uW731Bj_qbhcdDg1-82Tq8bNftXqTTtFRk4c7-51j9Dq9e5k8kPnT_WxyPSeG07oj3LKyAKOBC-mKylhXm0LwumTAa8uXtdW0cbpqikqYSpQOaMOEWFrHhRGl5WN0MfR-xPC5c6lT67CL_QWKCcllBVJUOcWGlIkhpegalT_e6rhXFFRvUA0GVTaofgwqyBAfoNTryZb-qv-hvgH593N_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473780748</pqid></control><display><type>article</type><title>Fingerprinting Based Indoor Localization Considering the Dynamic Nature of Wi-Fi Signals</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alikhani, Nasim ; Moghtadaiee, Vahideh ; Ghorashi, Seyed Ali</creator><creatorcontrib>Alikhani, Nasim ; Moghtadaiee, Vahideh ; Ghorashi, Seyed Ali</creatorcontrib><description>Current localization techniques in outdoors cannot work well in indoors. Wi-Fi fingerprinting technique is an emerging localization technique for indoor environments. However in this technique, the dynamic nature of WiFi signals affects the accuracy of the measurements. In this paper, we use affinity propagation clustering method to decrease the computation complexity in location estimation. Then, we use the least variance of Received Signal Strength (RSS) measured among Access Points (APs) in each cluster. Also we assign lower weights to altering APs for each point in a cluster, to represent the level of similarity to Test Point (TP) by considering the dynamic nature of signals in indoor environments. A method for updating the radio map and improving the results is then proposed to decrease the cost of constructing the radio map. Simulation results show that the proposed method has 22.5% improvement in average in localization results, considering one altering AP in the layout, compared to the case when only RSS subset sampling is considered for localization because of altering APs.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-020-07636-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Clustering ; Communications Engineering ; Computer Communication Networks ; Engineering ; Fingerprinting ; Indoor environments ; Localization ; Networks ; Signal strength ; Signal,Image and Speech Processing</subject><ispartof>Wireless personal communications, 2020-11, Vol.115 (2), p.1445-1464</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3d2650ca0347e58cde9c543962039d3b9da1fea8f584c846e01f244bde34c46d3</citedby><cites>FETCH-LOGICAL-c319t-3d2650ca0347e58cde9c543962039d3b9da1fea8f584c846e01f244bde34c46d3</cites><orcidid>0000-0002-2910-9208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-020-07636-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-020-07636-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Alikhani, Nasim</creatorcontrib><creatorcontrib>Moghtadaiee, Vahideh</creatorcontrib><creatorcontrib>Ghorashi, Seyed Ali</creatorcontrib><title>Fingerprinting Based Indoor Localization Considering the Dynamic Nature of Wi-Fi Signals</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>Current localization techniques in outdoors cannot work well in indoors. Wi-Fi fingerprinting technique is an emerging localization technique for indoor environments. However in this technique, the dynamic nature of WiFi signals affects the accuracy of the measurements. In this paper, we use affinity propagation clustering method to decrease the computation complexity in location estimation. Then, we use the least variance of Received Signal Strength (RSS) measured among Access Points (APs) in each cluster. Also we assign lower weights to altering APs for each point in a cluster, to represent the level of similarity to Test Point (TP) by considering the dynamic nature of signals in indoor environments. A method for updating the radio map and improving the results is then proposed to decrease the cost of constructing the radio map. Simulation results show that the proposed method has 22.5% improvement in average in localization results, considering one altering AP in the layout, compared to the case when only RSS subset sampling is considered for localization because of altering APs.</description><subject>Clustering</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Engineering</subject><subject>Fingerprinting</subject><subject>Indoor environments</subject><subject>Localization</subject><subject>Networks</subject><subject>Signal strength</subject><subject>Signal,Image and Speech Processing</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOH4mTEQqFShUMgOhmubZTXLUx2OlQfj0OQWJjuhve59Xdg9A5hUsKIK8SpUxKAgwIyJKXBA7QiBaSkYqLxSEaQc1qUjLKjtFJSmuAjNVshBZT365c_Ii-7fKGb3RyFs9aG0LE82D0xn_pzocWT0KbvHWxT3XvDt_uW731Bj_qbhcdDg1-82Tq8bNftXqTTtFRk4c7-51j9Dq9e5k8kPnT_WxyPSeG07oj3LKyAKOBC-mKylhXm0LwumTAa8uXtdW0cbpqikqYSpQOaMOEWFrHhRGl5WN0MfR-xPC5c6lT67CL_QWKCcllBVJUOcWGlIkhpegalT_e6rhXFFRvUA0GVTaofgwqyBAfoNTryZb-qv-hvgH593N_</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Alikhani, Nasim</creator><creator>Moghtadaiee, Vahideh</creator><creator>Ghorashi, Seyed Ali</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2910-9208</orcidid></search><sort><creationdate>20201101</creationdate><title>Fingerprinting Based Indoor Localization Considering the Dynamic Nature of Wi-Fi Signals</title><author>Alikhani, Nasim ; Moghtadaiee, Vahideh ; Ghorashi, Seyed Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3d2650ca0347e58cde9c543962039d3b9da1fea8f584c846e01f244bde34c46d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Clustering</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Engineering</topic><topic>Fingerprinting</topic><topic>Indoor environments</topic><topic>Localization</topic><topic>Networks</topic><topic>Signal strength</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alikhani, Nasim</creatorcontrib><creatorcontrib>Moghtadaiee, Vahideh</creatorcontrib><creatorcontrib>Ghorashi, Seyed Ali</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alikhani, Nasim</au><au>Moghtadaiee, Vahideh</au><au>Ghorashi, Seyed Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fingerprinting Based Indoor Localization Considering the Dynamic Nature of Wi-Fi Signals</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>115</volume><issue>2</issue><spage>1445</spage><epage>1464</epage><pages>1445-1464</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>Current localization techniques in outdoors cannot work well in indoors. Wi-Fi fingerprinting technique is an emerging localization technique for indoor environments. However in this technique, the dynamic nature of WiFi signals affects the accuracy of the measurements. In this paper, we use affinity propagation clustering method to decrease the computation complexity in location estimation. Then, we use the least variance of Received Signal Strength (RSS) measured among Access Points (APs) in each cluster. Also we assign lower weights to altering APs for each point in a cluster, to represent the level of similarity to Test Point (TP) by considering the dynamic nature of signals in indoor environments. A method for updating the radio map and improving the results is then proposed to decrease the cost of constructing the radio map. Simulation results show that the proposed method has 22.5% improvement in average in localization results, considering one altering AP in the layout, compared to the case when only RSS subset sampling is considered for localization because of altering APs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-020-07636-0</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2910-9208</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-6212 |
ispartof | Wireless personal communications, 2020-11, Vol.115 (2), p.1445-1464 |
issn | 0929-6212 1572-834X |
language | eng |
recordid | cdi_proquest_journals_2473780748 |
source | SpringerLink Journals - AutoHoldings |
subjects | Clustering Communications Engineering Computer Communication Networks Engineering Fingerprinting Indoor environments Localization Networks Signal strength Signal,Image and Speech Processing |
title | Fingerprinting Based Indoor Localization Considering the Dynamic Nature of Wi-Fi Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fingerprinting%20Based%20Indoor%20Localization%20Considering%20the%20Dynamic%20Nature%20of%20Wi-Fi%20Signals&rft.jtitle=Wireless%20personal%20communications&rft.au=Alikhani,%20Nasim&rft.date=2020-11-01&rft.volume=115&rft.issue=2&rft.spage=1445&rft.epage=1464&rft.pages=1445-1464&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-020-07636-0&rft_dat=%3Cproquest_cross%3E2473780748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473780748&rft_id=info:pmid/&rfr_iscdi=true |