Differential Structures of Frölicher Spaces on Tangent Curves

Differential-geometric structures of Frölicher spaces for a singular manifold consisting of two tangent curves are considered. Calculations for two types of structures lead either to the ∞-flatness of all curves passing from one branch to another at a singular point or to the ∞-flatness of functions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-12, Vol.251 (4), p.453-461
1. Verfasser: Burian, S. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 461
container_issue 4
container_start_page 453
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 251
creator Burian, S. N.
description Differential-geometric structures of Frölicher spaces for a singular manifold consisting of two tangent curves are considered. Calculations for two types of structures lead either to the ∞-flatness of all curves passing from one branch to another at a singular point or to the ∞-flatness of functions. In the second case, smooth curves can change their branch of motion, their velocity vector vanishes at the singular point.
doi_str_mv 10.1007/s10958-020-05105-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2473778786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A726661931</galeid><sourcerecordid>A726661931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2244-ba83aefb682f0df0df02a05c394038f1728ac414066ea205ad932c637a3308e93</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWKsv4GnBc-rkzybZi1CqVaHgofUc0mxSt2x3a7Ir-GK-gC9m2hW8yQQmDL9vEj6ErglMCIC8jQSKXGGggCEnkGN-gkYklwwrWeSn6Q6SYsYkP0cXMW4hQUKxEbq7r7x3wTVdZeps2YXedn1wMWt9Ng_fX3Vl31zIlntjD8MmW5lmk9LZrA8fLl6iM2_q6K5--xi9zh9Wsye8eHl8nk0X2FLKOV4bxYzza6Goh_J4qIHcsoIDU55IqozlhIMQzlDITVkwagWThjFQrmBjdDPs3Yf2vXex09u2D016UlMumZRKKpFSkyG1MbXTVePbLhibqnS7yraN81WaTyUVQpCCkQTQAbChjTE4r_eh2pnwqQnog1g9iNVJrD6K1TxBbIBiCicZ4e8v_1A_wpB6Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473778786</pqid></control><display><type>article</type><title>Differential Structures of Frölicher Spaces on Tangent Curves</title><source>SpringerLink Journals</source><creator>Burian, S. N.</creator><creatorcontrib>Burian, S. N.</creatorcontrib><description>Differential-geometric structures of Frölicher spaces for a singular manifold consisting of two tangent curves are considered. Calculations for two types of structures lead either to the ∞-flatness of all curves passing from one branch to another at a singular point or to the ∞-flatness of functions. In the second case, smooth curves can change their branch of motion, their velocity vector vanishes at the singular point.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-020-05105-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Curves ; Differential geometry ; Flatness ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-12, Vol.251 (4), p.453-461</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2244-ba83aefb682f0df0df02a05c394038f1728ac414066ea205ad932c637a3308e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-020-05105-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-020-05105-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Burian, S. N.</creatorcontrib><title>Differential Structures of Frölicher Spaces on Tangent Curves</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>Differential-geometric structures of Frölicher spaces for a singular manifold consisting of two tangent curves are considered. Calculations for two types of structures lead either to the ∞-flatness of all curves passing from one branch to another at a singular point or to the ∞-flatness of functions. In the second case, smooth curves can change their branch of motion, their velocity vector vanishes at the singular point.</description><subject>Curves</subject><subject>Differential geometry</subject><subject>Flatness</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQh4MoWKsv4GnBc-rkzybZi1CqVaHgofUc0mxSt2x3a7Ir-GK-gC9m2hW8yQQmDL9vEj6ErglMCIC8jQSKXGGggCEnkGN-gkYklwwrWeSn6Q6SYsYkP0cXMW4hQUKxEbq7r7x3wTVdZeps2YXedn1wMWt9Ng_fX3Vl31zIlntjD8MmW5lmk9LZrA8fLl6iM2_q6K5--xi9zh9Wsye8eHl8nk0X2FLKOV4bxYzza6Goh_J4qIHcsoIDU55IqozlhIMQzlDITVkwagWThjFQrmBjdDPs3Yf2vXex09u2D016UlMumZRKKpFSkyG1MbXTVePbLhibqnS7yraN81WaTyUVQpCCkQTQAbChjTE4r_eh2pnwqQnog1g9iNVJrD6K1TxBbIBiCicZ4e8v_1A_wpB6Jg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Burian, S. N.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Differential Structures of Frölicher Spaces on Tangent Curves</title><author>Burian, S. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2244-ba83aefb682f0df0df02a05c394038f1728ac414066ea205ad932c637a3308e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Curves</topic><topic>Differential geometry</topic><topic>Flatness</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burian, S. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burian, S. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential Structures of Frölicher Spaces on Tangent Curves</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>251</volume><issue>4</issue><spage>453</spage><epage>461</epage><pages>453-461</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>Differential-geometric structures of Frölicher spaces for a singular manifold consisting of two tangent curves are considered. Calculations for two types of structures lead either to the ∞-flatness of all curves passing from one branch to another at a singular point or to the ∞-flatness of functions. In the second case, smooth curves can change their branch of motion, their velocity vector vanishes at the singular point.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-020-05105-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2020-12, Vol.251 (4), p.453-461
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2473778786
source SpringerLink Journals
subjects Curves
Differential geometry
Flatness
Mathematics
Mathematics and Statistics
title Differential Structures of Frölicher Spaces on Tangent Curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20Structures%20of%20Fr%C3%B6licher%20Spaces%20on%20Tangent%20Curves&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Burian,%20S.%20N.&rft.date=2020-12-01&rft.volume=251&rft.issue=4&rft.spage=453&rft.epage=461&rft.pages=453-461&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-020-05105-4&rft_dat=%3Cgale_proqu%3EA726661931%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473778786&rft_id=info:pmid/&rft_galeid=A726661931&rfr_iscdi=true