A Novel Method of SOC Estimation for Electric Vehicle Based on Adaptive Particle Filter

Aimed at improving SOC estimation accuracy, speed and robust of battery on electric vehicle, SOC estimation method based on adaptive particle filter is proposed. 1-order RC and lag model, 2-order RC and lag model, 3-order RC and lag model are built. Particle Swarm algorithm is used to search optimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatic control and computer sciences 2020-09, Vol.54 (5), p.412-422
Hauptverfasser: Jiabao Tao, Zhu, Dunyao, Sun, Chuan, Chu, Duanfeng, Ma, Yulin, Li, Haibo, Li, Yicheng, Xu, Tingxuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue 5
container_start_page 412
container_title Automatic control and computer sciences
container_volume 54
creator Jiabao Tao
Zhu, Dunyao
Sun, Chuan
Chu, Duanfeng
Ma, Yulin
Li, Haibo
Li, Yicheng
Xu, Tingxuan
description Aimed at improving SOC estimation accuracy, speed and robust of battery on electric vehicle, SOC estimation method based on adaptive particle filter is proposed. 1-order RC and lag model, 2-order RC and lag model, 3-order RC and lag model are built. Particle Swarm algorithm is used to search optimal parameters. Considering calculation and model accuracy, 1-order lag model is chosen. Traditional particle filter principle is analyzed. State estimation is a substitute to observation equation, and observation estimation is gotten. Observation noise variance is adjusted adaptively through observation error. Verification by simulation, convergence speed and robust of adaptive particle filter are superior to traditional algorithm when SOC original error is large. Besides, SOC estimation accuracy and stability is superior to traditional algorithm obviously.
doi_str_mv 10.3103/S0146411620050089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473778277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473778277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-19a9ad7a1f2937474afa7d2c6dd33124596ce7bdd86a74b6b0e8fdd38e766eb23</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssQ74kdjOslQtIJWHVF67yInHNFWIi-1W4u9xKRILxGoW59wZzUXolJJzTgm_mBOai5xSwQgpCFHlHhrQolAZJep1Hw22ONvyQ3QUwjJJhVJigF5G-M5toMO3EBfOYGfx_H6MJyG27zq2rsfWeTzpoIm-bfAzLNqmA3ypAyS5xyOjV7HdAH7QPn6jadtF8MfowOouwMnPHKKn6eRxfJ3N7q9uxqNZ1nAqYkZLXWojNbWs5DKXubZaGtYIYzinLC9K0YCsjVFCy7wWNQFlE1MghYCa8SE62-1defexhhCrpVv7Pp2sWC65lIpJmSy6sxrvQvBgq5VP__nPipJq21_1p7-UYbtMSG7_Bv538_-hL9cKcJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473778277</pqid></control><display><type>article</type><title>A Novel Method of SOC Estimation for Electric Vehicle Based on Adaptive Particle Filter</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jiabao Tao ; Zhu, Dunyao ; Sun, Chuan ; Chu, Duanfeng ; Ma, Yulin ; Li, Haibo ; Li, Yicheng ; Xu, Tingxuan</creator><creatorcontrib>Jiabao Tao ; Zhu, Dunyao ; Sun, Chuan ; Chu, Duanfeng ; Ma, Yulin ; Li, Haibo ; Li, Yicheng ; Xu, Tingxuan</creatorcontrib><description>Aimed at improving SOC estimation accuracy, speed and robust of battery on electric vehicle, SOC estimation method based on adaptive particle filter is proposed. 1-order RC and lag model, 2-order RC and lag model, 3-order RC and lag model are built. Particle Swarm algorithm is used to search optimal parameters. Considering calculation and model accuracy, 1-order lag model is chosen. Traditional particle filter principle is analyzed. State estimation is a substitute to observation equation, and observation estimation is gotten. Observation noise variance is adjusted adaptively through observation error. Verification by simulation, convergence speed and robust of adaptive particle filter are superior to traditional algorithm when SOC original error is large. Besides, SOC estimation accuracy and stability is superior to traditional algorithm obviously.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S0146411620050089</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Accuracy ; Adaptive filters ; Algorithms ; Computer Science ; Control Structures and Microprogramming ; Electric vehicles ; Model accuracy ; Robustness ; State estimation</subject><ispartof>Automatic control and computer sciences, 2020-09, Vol.54 (5), p.412-422</ispartof><rights>Allerton Press, Inc. 2020</rights><rights>Allerton Press, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-19a9ad7a1f2937474afa7d2c6dd33124596ce7bdd86a74b6b0e8fdd38e766eb23</citedby><cites>FETCH-LOGICAL-c316t-19a9ad7a1f2937474afa7d2c6dd33124596ce7bdd86a74b6b0e8fdd38e766eb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0146411620050089$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0146411620050089$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jiabao Tao</creatorcontrib><creatorcontrib>Zhu, Dunyao</creatorcontrib><creatorcontrib>Sun, Chuan</creatorcontrib><creatorcontrib>Chu, Duanfeng</creatorcontrib><creatorcontrib>Ma, Yulin</creatorcontrib><creatorcontrib>Li, Haibo</creatorcontrib><creatorcontrib>Li, Yicheng</creatorcontrib><creatorcontrib>Xu, Tingxuan</creatorcontrib><title>A Novel Method of SOC Estimation for Electric Vehicle Based on Adaptive Particle Filter</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>Aimed at improving SOC estimation accuracy, speed and robust of battery on electric vehicle, SOC estimation method based on adaptive particle filter is proposed. 1-order RC and lag model, 2-order RC and lag model, 3-order RC and lag model are built. Particle Swarm algorithm is used to search optimal parameters. Considering calculation and model accuracy, 1-order lag model is chosen. Traditional particle filter principle is analyzed. State estimation is a substitute to observation equation, and observation estimation is gotten. Observation noise variance is adjusted adaptively through observation error. Verification by simulation, convergence speed and robust of adaptive particle filter are superior to traditional algorithm when SOC original error is large. Besides, SOC estimation accuracy and stability is superior to traditional algorithm obviously.</description><subject>Accuracy</subject><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Control Structures and Microprogramming</subject><subject>Electric vehicles</subject><subject>Model accuracy</subject><subject>Robustness</subject><subject>State estimation</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssQ74kdjOslQtIJWHVF67yInHNFWIi-1W4u9xKRILxGoW59wZzUXolJJzTgm_mBOai5xSwQgpCFHlHhrQolAZJep1Hw22ONvyQ3QUwjJJhVJigF5G-M5toMO3EBfOYGfx_H6MJyG27zq2rsfWeTzpoIm-bfAzLNqmA3ypAyS5xyOjV7HdAH7QPn6jadtF8MfowOouwMnPHKKn6eRxfJ3N7q9uxqNZ1nAqYkZLXWojNbWs5DKXubZaGtYIYzinLC9K0YCsjVFCy7wWNQFlE1MghYCa8SE62-1defexhhCrpVv7Pp2sWC65lIpJmSy6sxrvQvBgq5VP__nPipJq21_1p7-UYbtMSG7_Bv538_-hL9cKcJw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Jiabao Tao</creator><creator>Zhu, Dunyao</creator><creator>Sun, Chuan</creator><creator>Chu, Duanfeng</creator><creator>Ma, Yulin</creator><creator>Li, Haibo</creator><creator>Li, Yicheng</creator><creator>Xu, Tingxuan</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>A Novel Method of SOC Estimation for Electric Vehicle Based on Adaptive Particle Filter</title><author>Jiabao Tao ; Zhu, Dunyao ; Sun, Chuan ; Chu, Duanfeng ; Ma, Yulin ; Li, Haibo ; Li, Yicheng ; Xu, Tingxuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-19a9ad7a1f2937474afa7d2c6dd33124596ce7bdd86a74b6b0e8fdd38e766eb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Control Structures and Microprogramming</topic><topic>Electric vehicles</topic><topic>Model accuracy</topic><topic>Robustness</topic><topic>State estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiabao Tao</creatorcontrib><creatorcontrib>Zhu, Dunyao</creatorcontrib><creatorcontrib>Sun, Chuan</creatorcontrib><creatorcontrib>Chu, Duanfeng</creatorcontrib><creatorcontrib>Ma, Yulin</creatorcontrib><creatorcontrib>Li, Haibo</creatorcontrib><creatorcontrib>Li, Yicheng</creatorcontrib><creatorcontrib>Xu, Tingxuan</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiabao Tao</au><au>Zhu, Dunyao</au><au>Sun, Chuan</au><au>Chu, Duanfeng</au><au>Ma, Yulin</au><au>Li, Haibo</au><au>Li, Yicheng</au><au>Xu, Tingxuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Method of SOC Estimation for Electric Vehicle Based on Adaptive Particle Filter</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>54</volume><issue>5</issue><spage>412</spage><epage>422</epage><pages>412-422</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>Aimed at improving SOC estimation accuracy, speed and robust of battery on electric vehicle, SOC estimation method based on adaptive particle filter is proposed. 1-order RC and lag model, 2-order RC and lag model, 3-order RC and lag model are built. Particle Swarm algorithm is used to search optimal parameters. Considering calculation and model accuracy, 1-order lag model is chosen. Traditional particle filter principle is analyzed. State estimation is a substitute to observation equation, and observation estimation is gotten. Observation noise variance is adjusted adaptively through observation error. Verification by simulation, convergence speed and robust of adaptive particle filter are superior to traditional algorithm when SOC original error is large. Besides, SOC estimation accuracy and stability is superior to traditional algorithm obviously.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0146411620050089</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-4116
ispartof Automatic control and computer sciences, 2020-09, Vol.54 (5), p.412-422
issn 0146-4116
1558-108X
language eng
recordid cdi_proquest_journals_2473778277
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Adaptive filters
Algorithms
Computer Science
Control Structures and Microprogramming
Electric vehicles
Model accuracy
Robustness
State estimation
title A Novel Method of SOC Estimation for Electric Vehicle Based on Adaptive Particle Filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Method%20of%20SOC%20Estimation%20for%20Electric%20Vehicle%20Based%20on%20Adaptive%20Particle%20Filter&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Jiabao%20Tao&rft.date=2020-09-01&rft.volume=54&rft.issue=5&rft.spage=412&rft.epage=422&rft.pages=412-422&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S0146411620050089&rft_dat=%3Cproquest_cross%3E2473778277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473778277&rft_id=info:pmid/&rfr_iscdi=true