Sodium Ion-Conducting Polyvinylpyrrolidone (PVP)/Polyvinyl Alcohol (PVA) Blend Electrolyte Films

We report the synthesis of sodium ion-conducting polymer-blend electrolyte (NIPBE) thin films prepared by a standard solution-casting technique based on polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) and sodium bicarbonate (NaHCO 3 ). The as-synthesized NIPBE thin films were flexible, free-stand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2021-02, Vol.50 (2), p.403-418
Hauptverfasser: Sadiq, Mohd, Raza, Mohammad Moeen Hasan, Murtaza, Tahir, Zulfequar, Mohammad, Ali, Javid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 418
container_issue 2
container_start_page 403
container_title Journal of electronic materials
container_volume 50
creator Sadiq, Mohd
Raza, Mohammad Moeen Hasan
Murtaza, Tahir
Zulfequar, Mohammad
Ali, Javid
description We report the synthesis of sodium ion-conducting polymer-blend electrolyte (NIPBE) thin films prepared by a standard solution-casting technique based on polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) and sodium bicarbonate (NaHCO 3 ). The as-synthesized NIPBE thin films were flexible, free-standing and displayed good mechanical stability. The prepared films were characterized using various experimental techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), AC impedance spectroscopy, linear sweep voltammetry (LSV), cyclic voltammetry (CV), Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy. The SEM, XRD and DSC studies revealed a reduction in the crystallinity of the polymer-blend electrolyte with an increase in the content of NaHCO 3 due to the plasticization effect of Na-salts. The FTIR spectra show the complexation behavior of our as-prepared NIPBEs. The optical properties (i.e., direct and indirect optical energy bandgaps, optical absorption edge) were estimated using UV–visible spectroscopy studies. The dynamic ion behavior of all the as-prepared samples was assessed by the frequency-dependent AC conductivity of the NIPBEs. Also, the dielectric constant and dielectric loss ( ε ′ and ε ″), and electric modulus ( M ′ and M ″) vs. frequency plots at different concentrations and at room temperatures, were reported. The relaxation frequency ( τ s ) of the NIPBE films was determined from the loss tangent spectra (tan δ ). The ionic conductivity of NIPBE films was found to increase with sodium salt concentration, with maximum conductivity of the order of ∼10 −5 S/cm at 30 °C. CV measurements showed good electrochemical stability of the sample containing a high concentration of Na salts. The optimized NIPBEs showed ionic conductivity and electrochemical voltage stability which is good for application in energy storage devices.
doi_str_mv 10.1007/s11664-020-08581-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473502490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473502490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7c5570e623c2669ab19aa94dddc96bc5eed61bc0f29f46e7f3c823315d2382d13</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuCN-4iLidp0vZyjk0HAwd-4F3sknR2ZM1MWqH_3s6K3nl14JznfQ88CF0CuQFCknEAECLGhBJMUp4ChiM0AB4zDKl4PUYDwgRgThk_RWchbAkBDikM0Nuj02WzixauwlNX6UbVZbWJVs62n2XV2n3rvbOldpWJrlcvq9H49xRNrHLvzh72k1F0a02lo5k1qu4SbW2ieWl34RydFLkN5uJnDtHzfPY0vcfLh7vFdLLEikFW40RxnhAjKFNUiCxfQ5bnWay1VplYK26MFrBWpKBZEQuTFEyllDHgmrKUamBDdNX37r37aEyo5dY1vupeShonjBMaZ6SjaE8p70LwppB7X-5y30og8mBS9iZlZ1J-m5SHataHQgdXG-P_qv9JfQEnunZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473502490</pqid></control><display><type>article</type><title>Sodium Ion-Conducting Polyvinylpyrrolidone (PVP)/Polyvinyl Alcohol (PVA) Blend Electrolyte Films</title><source>SpringerLink Journals</source><creator>Sadiq, Mohd ; Raza, Mohammad Moeen Hasan ; Murtaza, Tahir ; Zulfequar, Mohammad ; Ali, Javid</creator><creatorcontrib>Sadiq, Mohd ; Raza, Mohammad Moeen Hasan ; Murtaza, Tahir ; Zulfequar, Mohammad ; Ali, Javid</creatorcontrib><description>We report the synthesis of sodium ion-conducting polymer-blend electrolyte (NIPBE) thin films prepared by a standard solution-casting technique based on polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) and sodium bicarbonate (NaHCO 3 ). The as-synthesized NIPBE thin films were flexible, free-standing and displayed good mechanical stability. The prepared films were characterized using various experimental techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), AC impedance spectroscopy, linear sweep voltammetry (LSV), cyclic voltammetry (CV), Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy. The SEM, XRD and DSC studies revealed a reduction in the crystallinity of the polymer-blend electrolyte with an increase in the content of NaHCO 3 due to the plasticization effect of Na-salts. The FTIR spectra show the complexation behavior of our as-prepared NIPBEs. The optical properties (i.e., direct and indirect optical energy bandgaps, optical absorption edge) were estimated using UV–visible spectroscopy studies. The dynamic ion behavior of all the as-prepared samples was assessed by the frequency-dependent AC conductivity of the NIPBEs. Also, the dielectric constant and dielectric loss ( ε ′ and ε ″), and electric modulus ( M ′ and M ″) vs. frequency plots at different concentrations and at room temperatures, were reported. The relaxation frequency ( τ s ) of the NIPBE films was determined from the loss tangent spectra (tan δ ). The ionic conductivity of NIPBE films was found to increase with sodium salt concentration, with maximum conductivity of the order of ∼10 −5 S/cm at 30 °C. CV measurements showed good electrochemical stability of the sample containing a high concentration of Na salts. The optimized NIPBEs showed ionic conductivity and electrochemical voltage stability which is good for application in energy storage devices.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08581-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry and Materials Science ; Conducting polymers ; Dielectric loss ; Differential scanning calorimetry ; Electrolytes ; Electronics and Microelectronics ; Energy storage ; Fourier transforms ; Infrared spectroscopy ; Instrumentation ; Ion currents ; Materials Science ; Optical and Electronic Materials ; Optical properties ; Original Research Article ; Polyvinyl alcohol ; Polyvinylpyrrolidone ; Room temperature ; Scanning electron microscopy ; Sodium ; Sodium bicarbonate ; Sodium salts ; Solid State Physics ; Spectroscopic analysis ; Spectrum analysis ; Thin films ; Voltage stability ; Voltammetry ; X-ray diffraction</subject><ispartof>Journal of electronic materials, 2021-02, Vol.50 (2), p.403-418</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>The Minerals, Metals &amp; Materials Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7c5570e623c2669ab19aa94dddc96bc5eed61bc0f29f46e7f3c823315d2382d13</citedby><cites>FETCH-LOGICAL-c319t-7c5570e623c2669ab19aa94dddc96bc5eed61bc0f29f46e7f3c823315d2382d13</cites><orcidid>0000-0002-5898-7106 ; 0000-0001-8042-8733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-020-08581-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-020-08581-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sadiq, Mohd</creatorcontrib><creatorcontrib>Raza, Mohammad Moeen Hasan</creatorcontrib><creatorcontrib>Murtaza, Tahir</creatorcontrib><creatorcontrib>Zulfequar, Mohammad</creatorcontrib><creatorcontrib>Ali, Javid</creatorcontrib><title>Sodium Ion-Conducting Polyvinylpyrrolidone (PVP)/Polyvinyl Alcohol (PVA) Blend Electrolyte Films</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>We report the synthesis of sodium ion-conducting polymer-blend electrolyte (NIPBE) thin films prepared by a standard solution-casting technique based on polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) and sodium bicarbonate (NaHCO 3 ). The as-synthesized NIPBE thin films were flexible, free-standing and displayed good mechanical stability. The prepared films were characterized using various experimental techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), AC impedance spectroscopy, linear sweep voltammetry (LSV), cyclic voltammetry (CV), Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy. The SEM, XRD and DSC studies revealed a reduction in the crystallinity of the polymer-blend electrolyte with an increase in the content of NaHCO 3 due to the plasticization effect of Na-salts. The FTIR spectra show the complexation behavior of our as-prepared NIPBEs. The optical properties (i.e., direct and indirect optical energy bandgaps, optical absorption edge) were estimated using UV–visible spectroscopy studies. The dynamic ion behavior of all the as-prepared samples was assessed by the frequency-dependent AC conductivity of the NIPBEs. Also, the dielectric constant and dielectric loss ( ε ′ and ε ″), and electric modulus ( M ′ and M ″) vs. frequency plots at different concentrations and at room temperatures, were reported. The relaxation frequency ( τ s ) of the NIPBE films was determined from the loss tangent spectra (tan δ ). The ionic conductivity of NIPBE films was found to increase with sodium salt concentration, with maximum conductivity of the order of ∼10 −5 S/cm at 30 °C. CV measurements showed good electrochemical stability of the sample containing a high concentration of Na salts. The optimized NIPBEs showed ionic conductivity and electrochemical voltage stability which is good for application in energy storage devices.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Conducting polymers</subject><subject>Dielectric loss</subject><subject>Differential scanning calorimetry</subject><subject>Electrolytes</subject><subject>Electronics and Microelectronics</subject><subject>Energy storage</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Instrumentation</subject><subject>Ion currents</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Original Research Article</subject><subject>Polyvinyl alcohol</subject><subject>Polyvinylpyrrolidone</subject><subject>Room temperature</subject><subject>Scanning electron microscopy</subject><subject>Sodium</subject><subject>Sodium bicarbonate</subject><subject>Sodium salts</subject><subject>Solid State Physics</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Thin films</subject><subject>Voltage stability</subject><subject>Voltammetry</subject><subject>X-ray diffraction</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kF1LwzAUhoMoOKd_wKuCN-4iLidp0vZyjk0HAwd-4F3sknR2ZM1MWqH_3s6K3nl14JznfQ88CF0CuQFCknEAECLGhBJMUp4ChiM0AB4zDKl4PUYDwgRgThk_RWchbAkBDikM0Nuj02WzixauwlNX6UbVZbWJVs62n2XV2n3rvbOldpWJrlcvq9H49xRNrHLvzh72k1F0a02lo5k1qu4SbW2ieWl34RydFLkN5uJnDtHzfPY0vcfLh7vFdLLEikFW40RxnhAjKFNUiCxfQ5bnWay1VplYK26MFrBWpKBZEQuTFEyllDHgmrKUamBDdNX37r37aEyo5dY1vupeShonjBMaZ6SjaE8p70LwppB7X-5y30og8mBS9iZlZ1J-m5SHataHQgdXG-P_qv9JfQEnunZU</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Sadiq, Mohd</creator><creator>Raza, Mohammad Moeen Hasan</creator><creator>Murtaza, Tahir</creator><creator>Zulfequar, Mohammad</creator><creator>Ali, Javid</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-5898-7106</orcidid><orcidid>https://orcid.org/0000-0001-8042-8733</orcidid></search><sort><creationdate>20210201</creationdate><title>Sodium Ion-Conducting Polyvinylpyrrolidone (PVP)/Polyvinyl Alcohol (PVA) Blend Electrolyte Films</title><author>Sadiq, Mohd ; Raza, Mohammad Moeen Hasan ; Murtaza, Tahir ; Zulfequar, Mohammad ; Ali, Javid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7c5570e623c2669ab19aa94dddc96bc5eed61bc0f29f46e7f3c823315d2382d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Conducting polymers</topic><topic>Dielectric loss</topic><topic>Differential scanning calorimetry</topic><topic>Electrolytes</topic><topic>Electronics and Microelectronics</topic><topic>Energy storage</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Instrumentation</topic><topic>Ion currents</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Original Research Article</topic><topic>Polyvinyl alcohol</topic><topic>Polyvinylpyrrolidone</topic><topic>Room temperature</topic><topic>Scanning electron microscopy</topic><topic>Sodium</topic><topic>Sodium bicarbonate</topic><topic>Sodium salts</topic><topic>Solid State Physics</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Thin films</topic><topic>Voltage stability</topic><topic>Voltammetry</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadiq, Mohd</creatorcontrib><creatorcontrib>Raza, Mohammad Moeen Hasan</creatorcontrib><creatorcontrib>Murtaza, Tahir</creatorcontrib><creatorcontrib>Zulfequar, Mohammad</creatorcontrib><creatorcontrib>Ali, Javid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadiq, Mohd</au><au>Raza, Mohammad Moeen Hasan</au><au>Murtaza, Tahir</au><au>Zulfequar, Mohammad</au><au>Ali, Javid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium Ion-Conducting Polyvinylpyrrolidone (PVP)/Polyvinyl Alcohol (PVA) Blend Electrolyte Films</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>50</volume><issue>2</issue><spage>403</spage><epage>418</epage><pages>403-418</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>We report the synthesis of sodium ion-conducting polymer-blend electrolyte (NIPBE) thin films prepared by a standard solution-casting technique based on polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) and sodium bicarbonate (NaHCO 3 ). The as-synthesized NIPBE thin films were flexible, free-standing and displayed good mechanical stability. The prepared films were characterized using various experimental techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), AC impedance spectroscopy, linear sweep voltammetry (LSV), cyclic voltammetry (CV), Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy. The SEM, XRD and DSC studies revealed a reduction in the crystallinity of the polymer-blend electrolyte with an increase in the content of NaHCO 3 due to the plasticization effect of Na-salts. The FTIR spectra show the complexation behavior of our as-prepared NIPBEs. The optical properties (i.e., direct and indirect optical energy bandgaps, optical absorption edge) were estimated using UV–visible spectroscopy studies. The dynamic ion behavior of all the as-prepared samples was assessed by the frequency-dependent AC conductivity of the NIPBEs. Also, the dielectric constant and dielectric loss ( ε ′ and ε ″), and electric modulus ( M ′ and M ″) vs. frequency plots at different concentrations and at room temperatures, were reported. The relaxation frequency ( τ s ) of the NIPBE films was determined from the loss tangent spectra (tan δ ). The ionic conductivity of NIPBE films was found to increase with sodium salt concentration, with maximum conductivity of the order of ∼10 −5 S/cm at 30 °C. CV measurements showed good electrochemical stability of the sample containing a high concentration of Na salts. The optimized NIPBEs showed ionic conductivity and electrochemical voltage stability which is good for application in energy storage devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08581-1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5898-7106</orcidid><orcidid>https://orcid.org/0000-0001-8042-8733</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2021-02, Vol.50 (2), p.403-418
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2473502490
source SpringerLink Journals
subjects Characterization and Evaluation of Materials
Chemical synthesis
Chemistry and Materials Science
Conducting polymers
Dielectric loss
Differential scanning calorimetry
Electrolytes
Electronics and Microelectronics
Energy storage
Fourier transforms
Infrared spectroscopy
Instrumentation
Ion currents
Materials Science
Optical and Electronic Materials
Optical properties
Original Research Article
Polyvinyl alcohol
Polyvinylpyrrolidone
Room temperature
Scanning electron microscopy
Sodium
Sodium bicarbonate
Sodium salts
Solid State Physics
Spectroscopic analysis
Spectrum analysis
Thin films
Voltage stability
Voltammetry
X-ray diffraction
title Sodium Ion-Conducting Polyvinylpyrrolidone (PVP)/Polyvinyl Alcohol (PVA) Blend Electrolyte Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium%20Ion-Conducting%20Polyvinylpyrrolidone%20(PVP)/Polyvinyl%20Alcohol%20(PVA)%20Blend%20Electrolyte%20Films&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Sadiq,%20Mohd&rft.date=2021-02-01&rft.volume=50&rft.issue=2&rft.spage=403&rft.epage=418&rft.pages=403-418&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08581-1&rft_dat=%3Cproquest_cross%3E2473502490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473502490&rft_id=info:pmid/&rfr_iscdi=true