Phytoplankton and anthropogenic changes in pelagic environments
“Phytoplankton” is a loosely defined functional term, indicating a group of organisms distributed into several taxonomic groups ranging from oxygenic photosynthetic bacteria to a number of eukaryotic classes included in protists. The range of specializations and adaptations of phytoplankton to a wid...
Gespeichert in:
Veröffentlicht in: | Hydrobiologia 2021, Vol.848 (1), p.251-284 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 284 |
---|---|
container_issue | 1 |
container_start_page | 251 |
container_title | Hydrobiologia |
container_volume | 848 |
creator | Salmaso, Nico Tolotti, Monica |
description | “Phytoplankton” is a loosely defined functional term, indicating a group of organisms distributed into several taxonomic groups ranging from oxygenic photosynthetic bacteria to a number of eukaryotic classes included in protists. The range of specializations and adaptations of phytoplankton to a wide variety of environmental conditions is astounding. This demonstrates the susceptibility of highly different populations to react rapidly to environmental changes generated by natural stressors and anthropogenic impacts. The aim of this work is to critically review the state of the art of knowledge about the impact of anthropogenic stress factors on phytoplankton composition and structure. At present, the two most important environmental stressors are represented by climate change and eutrophication, which act globally and at regional/local scales, respectively. Along with effects mediated by many other legacy and emerging stressors (briefly reviewed), the effects of these two main changes have been analysed at different levels of phytoplankton organization, i.e. individuals, populations and communities. It is stressed that a better knowledge will be obtained by extending the focus of studies from organisms detectable by light microscopy to the whole range of protists and microbial populations detected with the use of “omics” technologies, including e.g. next generation sequencing and ecological metabolomics. |
doi_str_mv | 10.1007/s10750-020-04323-w |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2473395125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650507049</galeid><sourcerecordid>A650507049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c5b24e7e0982cd7c4013c3a0d2623ee59bbf52fe5b267507fa86af2366f15b8a3</originalsourceid><addsrcrecordid>eNp9kctKAzEUhoMoWKsv4KrgysVoLpO5rKQUL4WC4mUd0vRkOtomY5JafXuPjiBuJBwCh-_LSfITcszoGaO0PI-MlpJmlGPlgotsu0MGTJYik4yVu2RAKauyislqnxzE-ExRqjkdkIu75Ufy3Uq7l-TdSLsFVloG3_kGXGtGZqldA3HUulEHK91gC9xbG7xbg0vxkOxZvYpw9LMPydPV5ePkJpvdXk8n41lmRM1TZuSc51ACrStuFqXJKRNGaLrgBRcAsp7PreQWECvwIaXVVaEtF0VhmZxXWgzJSX9uF_zrBmJSz34THI5UPC-FqCXjEqmznmr0ClTrrE9BG1wLWLfGO7At9seFpDiD5jUKp38EZBK8p0ZvYlTTh_u_LO9ZE3yMAazqQrvW4UMxqr5SUH0KClNQ3ymoLUqilyLC-JHh997_WJ8-r4m0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473395125</pqid></control><display><type>article</type><title>Phytoplankton and anthropogenic changes in pelagic environments</title><source>SpringerLink Journals - AutoHoldings</source><creator>Salmaso, Nico ; Tolotti, Monica</creator><creatorcontrib>Salmaso, Nico ; Tolotti, Monica</creatorcontrib><description>“Phytoplankton” is a loosely defined functional term, indicating a group of organisms distributed into several taxonomic groups ranging from oxygenic photosynthetic bacteria to a number of eukaryotic classes included in protists. The range of specializations and adaptations of phytoplankton to a wide variety of environmental conditions is astounding. This demonstrates the susceptibility of highly different populations to react rapidly to environmental changes generated by natural stressors and anthropogenic impacts. The aim of this work is to critically review the state of the art of knowledge about the impact of anthropogenic stress factors on phytoplankton composition and structure. At present, the two most important environmental stressors are represented by climate change and eutrophication, which act globally and at regional/local scales, respectively. Along with effects mediated by many other legacy and emerging stressors (briefly reviewed), the effects of these two main changes have been analysed at different levels of phytoplankton organization, i.e. individuals, populations and communities. It is stressed that a better knowledge will be obtained by extending the focus of studies from organisms detectable by light microscopy to the whole range of protists and microbial populations detected with the use of “omics” technologies, including e.g. next generation sequencing and ecological metabolomics.</description><identifier>ISSN: 0018-8158</identifier><identifier>EISSN: 1573-5117</identifier><identifier>DOI: 10.1007/s10750-020-04323-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptation ; Algae ; Anthropogenic changes ; Anthropogenic factors ; Aquatic ecosystems ; Biology ; Biomedical and Life Sciences ; Climate change ; Colin S. Reynolds' Legacy ; Cyanobacteria ; Ecology ; Ecosystem biology ; Environmental changes ; Environmental conditions ; Environmental stress ; Eutrophication ; Freshwater & Marine Ecology ; Global temperature changes ; Human influences ; Lakes ; Life Sciences ; Light microscopy ; Limnology ; Meta-analysis ; Metabolomics ; Microorganisms ; Next-generation sequencing ; Optical microscopy ; Phosphorus ; Photosynthesis ; Phytoplankton ; Plankton ; Populations ; Protists ; River ecology ; State-of-the-art reviews ; Taxonomy ; Trends ; Water quality ; Zoology</subject><ispartof>Hydrobiologia, 2021, Vol.848 (1), p.251-284</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c5b24e7e0982cd7c4013c3a0d2623ee59bbf52fe5b267507fa86af2366f15b8a3</citedby><cites>FETCH-LOGICAL-c392t-c5b24e7e0982cd7c4013c3a0d2623ee59bbf52fe5b267507fa86af2366f15b8a3</cites><orcidid>0000-0003-2674-8597 ; 0000-0001-6057-3642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10750-020-04323-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10750-020-04323-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Salmaso, Nico</creatorcontrib><creatorcontrib>Tolotti, Monica</creatorcontrib><title>Phytoplankton and anthropogenic changes in pelagic environments</title><title>Hydrobiologia</title><addtitle>Hydrobiologia</addtitle><description>“Phytoplankton” is a loosely defined functional term, indicating a group of organisms distributed into several taxonomic groups ranging from oxygenic photosynthetic bacteria to a number of eukaryotic classes included in protists. The range of specializations and adaptations of phytoplankton to a wide variety of environmental conditions is astounding. This demonstrates the susceptibility of highly different populations to react rapidly to environmental changes generated by natural stressors and anthropogenic impacts. The aim of this work is to critically review the state of the art of knowledge about the impact of anthropogenic stress factors on phytoplankton composition and structure. At present, the two most important environmental stressors are represented by climate change and eutrophication, which act globally and at regional/local scales, respectively. Along with effects mediated by many other legacy and emerging stressors (briefly reviewed), the effects of these two main changes have been analysed at different levels of phytoplankton organization, i.e. individuals, populations and communities. It is stressed that a better knowledge will be obtained by extending the focus of studies from organisms detectable by light microscopy to the whole range of protists and microbial populations detected with the use of “omics” technologies, including e.g. next generation sequencing and ecological metabolomics.</description><subject>Adaptation</subject><subject>Algae</subject><subject>Anthropogenic changes</subject><subject>Anthropogenic factors</subject><subject>Aquatic ecosystems</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Climate change</subject><subject>Colin S. Reynolds' Legacy</subject><subject>Cyanobacteria</subject><subject>Ecology</subject><subject>Ecosystem biology</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Environmental stress</subject><subject>Eutrophication</subject><subject>Freshwater & Marine Ecology</subject><subject>Global temperature changes</subject><subject>Human influences</subject><subject>Lakes</subject><subject>Life Sciences</subject><subject>Light microscopy</subject><subject>Limnology</subject><subject>Meta-analysis</subject><subject>Metabolomics</subject><subject>Microorganisms</subject><subject>Next-generation sequencing</subject><subject>Optical microscopy</subject><subject>Phosphorus</subject><subject>Photosynthesis</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Populations</subject><subject>Protists</subject><subject>River ecology</subject><subject>State-of-the-art reviews</subject><subject>Taxonomy</subject><subject>Trends</subject><subject>Water quality</subject><subject>Zoology</subject><issn>0018-8158</issn><issn>1573-5117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctKAzEUhoMoWKsv4KrgysVoLpO5rKQUL4WC4mUd0vRkOtomY5JafXuPjiBuJBwCh-_LSfITcszoGaO0PI-MlpJmlGPlgotsu0MGTJYik4yVu2RAKauyislqnxzE-ExRqjkdkIu75Ufy3Uq7l-TdSLsFVloG3_kGXGtGZqldA3HUulEHK91gC9xbG7xbg0vxkOxZvYpw9LMPydPV5ePkJpvdXk8n41lmRM1TZuSc51ACrStuFqXJKRNGaLrgBRcAsp7PreQWECvwIaXVVaEtF0VhmZxXWgzJSX9uF_zrBmJSz34THI5UPC-FqCXjEqmznmr0ClTrrE9BG1wLWLfGO7At9seFpDiD5jUKp38EZBK8p0ZvYlTTh_u_LO9ZE3yMAazqQrvW4UMxqr5SUH0KClNQ3ymoLUqilyLC-JHh997_WJ8-r4m0</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Salmaso, Nico</creator><creator>Tolotti, Monica</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-2674-8597</orcidid><orcidid>https://orcid.org/0000-0001-6057-3642</orcidid></search><sort><creationdate>2021</creationdate><title>Phytoplankton and anthropogenic changes in pelagic environments</title><author>Salmaso, Nico ; Tolotti, Monica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c5b24e7e0982cd7c4013c3a0d2623ee59bbf52fe5b267507fa86af2366f15b8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Algae</topic><topic>Anthropogenic changes</topic><topic>Anthropogenic factors</topic><topic>Aquatic ecosystems</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Climate change</topic><topic>Colin S. Reynolds' Legacy</topic><topic>Cyanobacteria</topic><topic>Ecology</topic><topic>Ecosystem biology</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Environmental stress</topic><topic>Eutrophication</topic><topic>Freshwater & Marine Ecology</topic><topic>Global temperature changes</topic><topic>Human influences</topic><topic>Lakes</topic><topic>Life Sciences</topic><topic>Light microscopy</topic><topic>Limnology</topic><topic>Meta-analysis</topic><topic>Metabolomics</topic><topic>Microorganisms</topic><topic>Next-generation sequencing</topic><topic>Optical microscopy</topic><topic>Phosphorus</topic><topic>Photosynthesis</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Populations</topic><topic>Protists</topic><topic>River ecology</topic><topic>State-of-the-art reviews</topic><topic>Taxonomy</topic><topic>Trends</topic><topic>Water quality</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salmaso, Nico</creatorcontrib><creatorcontrib>Tolotti, Monica</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Hydrobiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salmaso, Nico</au><au>Tolotti, Monica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytoplankton and anthropogenic changes in pelagic environments</atitle><jtitle>Hydrobiologia</jtitle><stitle>Hydrobiologia</stitle><date>2021</date><risdate>2021</risdate><volume>848</volume><issue>1</issue><spage>251</spage><epage>284</epage><pages>251-284</pages><issn>0018-8158</issn><eissn>1573-5117</eissn><abstract>“Phytoplankton” is a loosely defined functional term, indicating a group of organisms distributed into several taxonomic groups ranging from oxygenic photosynthetic bacteria to a number of eukaryotic classes included in protists. The range of specializations and adaptations of phytoplankton to a wide variety of environmental conditions is astounding. This demonstrates the susceptibility of highly different populations to react rapidly to environmental changes generated by natural stressors and anthropogenic impacts. The aim of this work is to critically review the state of the art of knowledge about the impact of anthropogenic stress factors on phytoplankton composition and structure. At present, the two most important environmental stressors are represented by climate change and eutrophication, which act globally and at regional/local scales, respectively. Along with effects mediated by many other legacy and emerging stressors (briefly reviewed), the effects of these two main changes have been analysed at different levels of phytoplankton organization, i.e. individuals, populations and communities. It is stressed that a better knowledge will be obtained by extending the focus of studies from organisms detectable by light microscopy to the whole range of protists and microbial populations detected with the use of “omics” technologies, including e.g. next generation sequencing and ecological metabolomics.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10750-020-04323-w</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-2674-8597</orcidid><orcidid>https://orcid.org/0000-0001-6057-3642</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-8158 |
ispartof | Hydrobiologia, 2021, Vol.848 (1), p.251-284 |
issn | 0018-8158 1573-5117 |
language | eng |
recordid | cdi_proquest_journals_2473395125 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adaptation Algae Anthropogenic changes Anthropogenic factors Aquatic ecosystems Biology Biomedical and Life Sciences Climate change Colin S. Reynolds' Legacy Cyanobacteria Ecology Ecosystem biology Environmental changes Environmental conditions Environmental stress Eutrophication Freshwater & Marine Ecology Global temperature changes Human influences Lakes Life Sciences Light microscopy Limnology Meta-analysis Metabolomics Microorganisms Next-generation sequencing Optical microscopy Phosphorus Photosynthesis Phytoplankton Plankton Populations Protists River ecology State-of-the-art reviews Taxonomy Trends Water quality Zoology |
title | Phytoplankton and anthropogenic changes in pelagic environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytoplankton%20and%20anthropogenic%20changes%20in%20pelagic%20environments&rft.jtitle=Hydrobiologia&rft.au=Salmaso,%20Nico&rft.date=2021&rft.volume=848&rft.issue=1&rft.spage=251&rft.epage=284&rft.pages=251-284&rft.issn=0018-8158&rft.eissn=1573-5117&rft_id=info:doi/10.1007/s10750-020-04323-w&rft_dat=%3Cgale_proqu%3EA650507049%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473395125&rft_id=info:pmid/&rft_galeid=A650507049&rfr_iscdi=true |