Phytoplankton and anthropogenic changes in pelagic environments

“Phytoplankton” is a loosely defined functional term, indicating a group of organisms distributed into several taxonomic groups ranging from oxygenic photosynthetic bacteria to a number of eukaryotic classes included in protists. The range of specializations and adaptations of phytoplankton to a wid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrobiologia 2021, Vol.848 (1), p.251-284
Hauptverfasser: Salmaso, Nico, Tolotti, Monica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 1
container_start_page 251
container_title Hydrobiologia
container_volume 848
creator Salmaso, Nico
Tolotti, Monica
description “Phytoplankton” is a loosely defined functional term, indicating a group of organisms distributed into several taxonomic groups ranging from oxygenic photosynthetic bacteria to a number of eukaryotic classes included in protists. The range of specializations and adaptations of phytoplankton to a wide variety of environmental conditions is astounding. This demonstrates the susceptibility of highly different populations to react rapidly to environmental changes generated by natural stressors and anthropogenic impacts. The aim of this work is to critically review the state of the art of knowledge about the impact of anthropogenic stress factors on phytoplankton composition and structure. At present, the two most important environmental stressors are represented by climate change and eutrophication, which act globally and at regional/local scales, respectively. Along with effects mediated by many other legacy and emerging stressors (briefly reviewed), the effects of these two main changes have been analysed at different levels of phytoplankton organization, i.e. individuals, populations and communities. It is stressed that a better knowledge will be obtained by extending the focus of studies from organisms detectable by light microscopy to the whole range of protists and microbial populations detected with the use of “omics” technologies, including e.g. next generation sequencing and ecological metabolomics.
doi_str_mv 10.1007/s10750-020-04323-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2473395125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650507049</galeid><sourcerecordid>A650507049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c5b24e7e0982cd7c4013c3a0d2623ee59bbf52fe5b267507fa86af2366f15b8a3</originalsourceid><addsrcrecordid>eNp9kctKAzEUhoMoWKsv4KrgysVoLpO5rKQUL4WC4mUd0vRkOtomY5JafXuPjiBuJBwCh-_LSfITcszoGaO0PI-MlpJmlGPlgotsu0MGTJYik4yVu2RAKauyislqnxzE-ExRqjkdkIu75Ufy3Uq7l-TdSLsFVloG3_kGXGtGZqldA3HUulEHK91gC9xbG7xbg0vxkOxZvYpw9LMPydPV5ePkJpvdXk8n41lmRM1TZuSc51ACrStuFqXJKRNGaLrgBRcAsp7PreQWECvwIaXVVaEtF0VhmZxXWgzJSX9uF_zrBmJSz34THI5UPC-FqCXjEqmznmr0ClTrrE9BG1wLWLfGO7At9seFpDiD5jUKp38EZBK8p0ZvYlTTh_u_LO9ZE3yMAazqQrvW4UMxqr5SUH0KClNQ3ymoLUqilyLC-JHh997_WJ8-r4m0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473395125</pqid></control><display><type>article</type><title>Phytoplankton and anthropogenic changes in pelagic environments</title><source>SpringerLink Journals - AutoHoldings</source><creator>Salmaso, Nico ; Tolotti, Monica</creator><creatorcontrib>Salmaso, Nico ; Tolotti, Monica</creatorcontrib><description>“Phytoplankton” is a loosely defined functional term, indicating a group of organisms distributed into several taxonomic groups ranging from oxygenic photosynthetic bacteria to a number of eukaryotic classes included in protists. The range of specializations and adaptations of phytoplankton to a wide variety of environmental conditions is astounding. This demonstrates the susceptibility of highly different populations to react rapidly to environmental changes generated by natural stressors and anthropogenic impacts. The aim of this work is to critically review the state of the art of knowledge about the impact of anthropogenic stress factors on phytoplankton composition and structure. At present, the two most important environmental stressors are represented by climate change and eutrophication, which act globally and at regional/local scales, respectively. Along with effects mediated by many other legacy and emerging stressors (briefly reviewed), the effects of these two main changes have been analysed at different levels of phytoplankton organization, i.e. individuals, populations and communities. It is stressed that a better knowledge will be obtained by extending the focus of studies from organisms detectable by light microscopy to the whole range of protists and microbial populations detected with the use of “omics” technologies, including e.g. next generation sequencing and ecological metabolomics.</description><identifier>ISSN: 0018-8158</identifier><identifier>EISSN: 1573-5117</identifier><identifier>DOI: 10.1007/s10750-020-04323-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptation ; Algae ; Anthropogenic changes ; Anthropogenic factors ; Aquatic ecosystems ; Biology ; Biomedical and Life Sciences ; Climate change ; Colin S. Reynolds' Legacy ; Cyanobacteria ; Ecology ; Ecosystem biology ; Environmental changes ; Environmental conditions ; Environmental stress ; Eutrophication ; Freshwater &amp; Marine Ecology ; Global temperature changes ; Human influences ; Lakes ; Life Sciences ; Light microscopy ; Limnology ; Meta-analysis ; Metabolomics ; Microorganisms ; Next-generation sequencing ; Optical microscopy ; Phosphorus ; Photosynthesis ; Phytoplankton ; Plankton ; Populations ; Protists ; River ecology ; State-of-the-art reviews ; Taxonomy ; Trends ; Water quality ; Zoology</subject><ispartof>Hydrobiologia, 2021, Vol.848 (1), p.251-284</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c5b24e7e0982cd7c4013c3a0d2623ee59bbf52fe5b267507fa86af2366f15b8a3</citedby><cites>FETCH-LOGICAL-c392t-c5b24e7e0982cd7c4013c3a0d2623ee59bbf52fe5b267507fa86af2366f15b8a3</cites><orcidid>0000-0003-2674-8597 ; 0000-0001-6057-3642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10750-020-04323-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10750-020-04323-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Salmaso, Nico</creatorcontrib><creatorcontrib>Tolotti, Monica</creatorcontrib><title>Phytoplankton and anthropogenic changes in pelagic environments</title><title>Hydrobiologia</title><addtitle>Hydrobiologia</addtitle><description>“Phytoplankton” is a loosely defined functional term, indicating a group of organisms distributed into several taxonomic groups ranging from oxygenic photosynthetic bacteria to a number of eukaryotic classes included in protists. The range of specializations and adaptations of phytoplankton to a wide variety of environmental conditions is astounding. This demonstrates the susceptibility of highly different populations to react rapidly to environmental changes generated by natural stressors and anthropogenic impacts. The aim of this work is to critically review the state of the art of knowledge about the impact of anthropogenic stress factors on phytoplankton composition and structure. At present, the two most important environmental stressors are represented by climate change and eutrophication, which act globally and at regional/local scales, respectively. Along with effects mediated by many other legacy and emerging stressors (briefly reviewed), the effects of these two main changes have been analysed at different levels of phytoplankton organization, i.e. individuals, populations and communities. It is stressed that a better knowledge will be obtained by extending the focus of studies from organisms detectable by light microscopy to the whole range of protists and microbial populations detected with the use of “omics” technologies, including e.g. next generation sequencing and ecological metabolomics.</description><subject>Adaptation</subject><subject>Algae</subject><subject>Anthropogenic changes</subject><subject>Anthropogenic factors</subject><subject>Aquatic ecosystems</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Climate change</subject><subject>Colin S. Reynolds' Legacy</subject><subject>Cyanobacteria</subject><subject>Ecology</subject><subject>Ecosystem biology</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Environmental stress</subject><subject>Eutrophication</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Global temperature changes</subject><subject>Human influences</subject><subject>Lakes</subject><subject>Life Sciences</subject><subject>Light microscopy</subject><subject>Limnology</subject><subject>Meta-analysis</subject><subject>Metabolomics</subject><subject>Microorganisms</subject><subject>Next-generation sequencing</subject><subject>Optical microscopy</subject><subject>Phosphorus</subject><subject>Photosynthesis</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Populations</subject><subject>Protists</subject><subject>River ecology</subject><subject>State-of-the-art reviews</subject><subject>Taxonomy</subject><subject>Trends</subject><subject>Water quality</subject><subject>Zoology</subject><issn>0018-8158</issn><issn>1573-5117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctKAzEUhoMoWKsv4KrgysVoLpO5rKQUL4WC4mUd0vRkOtomY5JafXuPjiBuJBwCh-_LSfITcszoGaO0PI-MlpJmlGPlgotsu0MGTJYik4yVu2RAKauyislqnxzE-ExRqjkdkIu75Ufy3Uq7l-TdSLsFVloG3_kGXGtGZqldA3HUulEHK91gC9xbG7xbg0vxkOxZvYpw9LMPydPV5ePkJpvdXk8n41lmRM1TZuSc51ACrStuFqXJKRNGaLrgBRcAsp7PreQWECvwIaXVVaEtF0VhmZxXWgzJSX9uF_zrBmJSz34THI5UPC-FqCXjEqmznmr0ClTrrE9BG1wLWLfGO7At9seFpDiD5jUKp38EZBK8p0ZvYlTTh_u_LO9ZE3yMAazqQrvW4UMxqr5SUH0KClNQ3ymoLUqilyLC-JHh997_WJ8-r4m0</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Salmaso, Nico</creator><creator>Tolotti, Monica</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-2674-8597</orcidid><orcidid>https://orcid.org/0000-0001-6057-3642</orcidid></search><sort><creationdate>2021</creationdate><title>Phytoplankton and anthropogenic changes in pelagic environments</title><author>Salmaso, Nico ; Tolotti, Monica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c5b24e7e0982cd7c4013c3a0d2623ee59bbf52fe5b267507fa86af2366f15b8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Algae</topic><topic>Anthropogenic changes</topic><topic>Anthropogenic factors</topic><topic>Aquatic ecosystems</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Climate change</topic><topic>Colin S. Reynolds' Legacy</topic><topic>Cyanobacteria</topic><topic>Ecology</topic><topic>Ecosystem biology</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Environmental stress</topic><topic>Eutrophication</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Global temperature changes</topic><topic>Human influences</topic><topic>Lakes</topic><topic>Life Sciences</topic><topic>Light microscopy</topic><topic>Limnology</topic><topic>Meta-analysis</topic><topic>Metabolomics</topic><topic>Microorganisms</topic><topic>Next-generation sequencing</topic><topic>Optical microscopy</topic><topic>Phosphorus</topic><topic>Photosynthesis</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Populations</topic><topic>Protists</topic><topic>River ecology</topic><topic>State-of-the-art reviews</topic><topic>Taxonomy</topic><topic>Trends</topic><topic>Water quality</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salmaso, Nico</creatorcontrib><creatorcontrib>Tolotti, Monica</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Hydrobiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salmaso, Nico</au><au>Tolotti, Monica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytoplankton and anthropogenic changes in pelagic environments</atitle><jtitle>Hydrobiologia</jtitle><stitle>Hydrobiologia</stitle><date>2021</date><risdate>2021</risdate><volume>848</volume><issue>1</issue><spage>251</spage><epage>284</epage><pages>251-284</pages><issn>0018-8158</issn><eissn>1573-5117</eissn><abstract>“Phytoplankton” is a loosely defined functional term, indicating a group of organisms distributed into several taxonomic groups ranging from oxygenic photosynthetic bacteria to a number of eukaryotic classes included in protists. The range of specializations and adaptations of phytoplankton to a wide variety of environmental conditions is astounding. This demonstrates the susceptibility of highly different populations to react rapidly to environmental changes generated by natural stressors and anthropogenic impacts. The aim of this work is to critically review the state of the art of knowledge about the impact of anthropogenic stress factors on phytoplankton composition and structure. At present, the two most important environmental stressors are represented by climate change and eutrophication, which act globally and at regional/local scales, respectively. Along with effects mediated by many other legacy and emerging stressors (briefly reviewed), the effects of these two main changes have been analysed at different levels of phytoplankton organization, i.e. individuals, populations and communities. It is stressed that a better knowledge will be obtained by extending the focus of studies from organisms detectable by light microscopy to the whole range of protists and microbial populations detected with the use of “omics” technologies, including e.g. next generation sequencing and ecological metabolomics.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10750-020-04323-w</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-2674-8597</orcidid><orcidid>https://orcid.org/0000-0001-6057-3642</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-8158
ispartof Hydrobiologia, 2021, Vol.848 (1), p.251-284
issn 0018-8158
1573-5117
language eng
recordid cdi_proquest_journals_2473395125
source SpringerLink Journals - AutoHoldings
subjects Adaptation
Algae
Anthropogenic changes
Anthropogenic factors
Aquatic ecosystems
Biology
Biomedical and Life Sciences
Climate change
Colin S. Reynolds' Legacy
Cyanobacteria
Ecology
Ecosystem biology
Environmental changes
Environmental conditions
Environmental stress
Eutrophication
Freshwater & Marine Ecology
Global temperature changes
Human influences
Lakes
Life Sciences
Light microscopy
Limnology
Meta-analysis
Metabolomics
Microorganisms
Next-generation sequencing
Optical microscopy
Phosphorus
Photosynthesis
Phytoplankton
Plankton
Populations
Protists
River ecology
State-of-the-art reviews
Taxonomy
Trends
Water quality
Zoology
title Phytoplankton and anthropogenic changes in pelagic environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytoplankton%20and%20anthropogenic%20changes%20in%20pelagic%20environments&rft.jtitle=Hydrobiologia&rft.au=Salmaso,%20Nico&rft.date=2021&rft.volume=848&rft.issue=1&rft.spage=251&rft.epage=284&rft.pages=251-284&rft.issn=0018-8158&rft.eissn=1573-5117&rft_id=info:doi/10.1007/s10750-020-04323-w&rft_dat=%3Cgale_proqu%3EA650507049%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473395125&rft_id=info:pmid/&rft_galeid=A650507049&rfr_iscdi=true