Spectral, electrical, magnetic and radiation shielding studies of Mg-doped Ni–Cu–Zn nanoferrites
Nanoferrites of Ni 0.1 Cu 0.2 Mg x Zn (0.7− x ) Fe 2 O 4 ( x = 0.0, 0.15, 0.25, 0.35, 0.45, 0.55 and 0.70 wt%) system fabricated using flash auto combustion technique. All investigated samples annealed for 2 h at 600 °C. XRD, FTIR and TEM were utilized to evaluate the structural characterization of...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2020-11, Vol.31 (22), p.20210-20222 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20222 |
---|---|
container_issue | 22 |
container_start_page | 20210 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 31 |
creator | Henaish, A. M. A. Mostafa, M. Salem, B. I. Zakaly, Hesham M. H. Issa, Shams A. M. Weinstein, I. A. Hemeda, O. M. |
description | Nanoferrites of Ni
0.1
Cu
0.2
Mg
x
Zn
(0.7−
x
)
Fe
2
O
4
(
x
= 0.0, 0.15, 0.25, 0.35, 0.45, 0.55 and 0.70 wt%) system fabricated using flash auto combustion technique. All investigated samples annealed for 2 h at 600 °C. XRD, FTIR and TEM were utilized to evaluate the structural characterization of as-prepared samples. The electrical DC resistivity of the investigated samples is evaluated as a function of frequency and temperature. The initial magnetic permeability (
μ
i
) is dependent on the temperature and was measured at constant frequency 1 kHz and 10 kHz of the sinusoidal wave. A single-phase of spinel structure was formed and with increasing Mg content the peak (311) of 100% intensity decreases, which demonstrates the presence of Mg, which slows down the growth of the crystal as X-ray result. The FTIR spectra of the prepared ferrite samples are distinguished by the presence of two strong absorption bands (
ν
1
= 554 cm
−1
) and (
ν
2
= 449 cm
−1
). The morphological observation is determined by the transmission electron microscopy (TEM) and shows that the particles size ranged between 26 and 39 nm. It can notice shifted Curie temperature (
T
c
) to a higher temperature by increasing Mg content. Mass attenuation coefficient (
μ
m
), mean free path (
λ
), half value layer (
X
1/2
), tenth value layer (
X
1/10
) and effective atomic numbers (
Z
eff
) for the studied samples, have been simulated using FLUKA (2020.0beta.2), while energy change from 15 × 10
–3
to 15
3+
keV with increasing Mg concentration, both μm and Zeff decrease. The largest value of μm and Zeff when
x
= 0% while sample
x
= 0.35% has a minimum value of
λ
,
X
1/10
and
X
1/2
. |
doi_str_mv | 10.1007/s10854-020-04541-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473384274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473384274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-29b51e32dc1bbcafaba4f919e32ec9131629ffa501f4854647de00ef3a4fcf663</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOI7-gKuAW6N59Wspgy8YdaGCuAnpPNoMbbpNumHc-Q_-oV9ixhbcuakqintvUQeAQ4JPCMbFaSS4zDjCFCPMM07QegvMSFYwxEv6tA1muMoKxDNKd8FejCuMcc5ZOQP6vjdqCLI9hqbdTE5t5lfZeDM4BaXXMEjt5OA6D-OLM612voFxGLUzEXYW3jRId73R8NZ9fXwuxlSePfTSd9aE4AYT98GOlW00B799Dh4vzh8WV2h5d3m9OFsixUg1IFrVGTGMakXqWkkra8ltRaq0MqoijOS0slZmmFievs15oQ3GxrIkUzbP2RwcTbl96N5GEwex6sbg00lBecFYyWnBk4pOKhW6GIOxog_uVYZ3QbDY0BQTTZFoih-aYp1MbDLFJPaNCX_R_7i-AZF6e2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473384274</pqid></control><display><type>article</type><title>Spectral, electrical, magnetic and radiation shielding studies of Mg-doped Ni–Cu–Zn nanoferrites</title><source>SpringerLink Journals - AutoHoldings</source><creator>Henaish, A. M. A. ; Mostafa, M. ; Salem, B. I. ; Zakaly, Hesham M. H. ; Issa, Shams A. M. ; Weinstein, I. A. ; Hemeda, O. M.</creator><creatorcontrib>Henaish, A. M. A. ; Mostafa, M. ; Salem, B. I. ; Zakaly, Hesham M. H. ; Issa, Shams A. M. ; Weinstein, I. A. ; Hemeda, O. M.</creatorcontrib><description>Nanoferrites of Ni
0.1
Cu
0.2
Mg
x
Zn
(0.7−
x
)
Fe
2
O
4
(
x
= 0.0, 0.15, 0.25, 0.35, 0.45, 0.55 and 0.70 wt%) system fabricated using flash auto combustion technique. All investigated samples annealed for 2 h at 600 °C. XRD, FTIR and TEM were utilized to evaluate the structural characterization of as-prepared samples. The electrical DC resistivity of the investigated samples is evaluated as a function of frequency and temperature. The initial magnetic permeability (
μ
i
) is dependent on the temperature and was measured at constant frequency 1 kHz and 10 kHz of the sinusoidal wave. A single-phase of spinel structure was formed and with increasing Mg content the peak (311) of 100% intensity decreases, which demonstrates the presence of Mg, which slows down the growth of the crystal as X-ray result. The FTIR spectra of the prepared ferrite samples are distinguished by the presence of two strong absorption bands (
ν
1
= 554 cm
−1
) and (
ν
2
= 449 cm
−1
). The morphological observation is determined by the transmission electron microscopy (TEM) and shows that the particles size ranged between 26 and 39 nm. It can notice shifted Curie temperature (
T
c
) to a higher temperature by increasing Mg content. Mass attenuation coefficient (
μ
m
), mean free path (
λ
), half value layer (
X
1/2
), tenth value layer (
X
1/10
) and effective atomic numbers (
Z
eff
) for the studied samples, have been simulated using FLUKA (2020.0beta.2), while energy change from 15 × 10
–3
to 15
3+
keV with increasing Mg concentration, both μm and Zeff decrease. The largest value of μm and Zeff when
x
= 0% while sample
x
= 0.35% has a minimum value of
λ
,
X
1/10
and
X
1/2
.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-04541-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorption spectra ; Atoms & subatomic particles ; Attenuation coefficients ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Crystal growth ; Curie temperature ; Evaluation ; Ferrites ; Investigations ; Magnesium ; Magnetic fields ; Magnetic permeability ; Magnetic shielding ; Materials Science ; Morphology ; Nanoparticles ; Nickel ; Optical and Electronic Materials ; Permeability ; Radiation ; Radiation shielding ; Sensors ; Simulation ; Sine waves ; Structural analysis ; Temperature dependence ; Transmission electron microscopy ; Zinc</subject><ispartof>Journal of materials science. Materials in electronics, 2020-11, Vol.31 (22), p.20210-20222</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-29b51e32dc1bbcafaba4f919e32ec9131629ffa501f4854647de00ef3a4fcf663</citedby><cites>FETCH-LOGICAL-c319t-29b51e32dc1bbcafaba4f919e32ec9131629ffa501f4854647de00ef3a4fcf663</cites><orcidid>0000-0002-9166-7497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-04541-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-04541-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Henaish, A. M. A.</creatorcontrib><creatorcontrib>Mostafa, M.</creatorcontrib><creatorcontrib>Salem, B. I.</creatorcontrib><creatorcontrib>Zakaly, Hesham M. H.</creatorcontrib><creatorcontrib>Issa, Shams A. M.</creatorcontrib><creatorcontrib>Weinstein, I. A.</creatorcontrib><creatorcontrib>Hemeda, O. M.</creatorcontrib><title>Spectral, electrical, magnetic and radiation shielding studies of Mg-doped Ni–Cu–Zn nanoferrites</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Nanoferrites of Ni
0.1
Cu
0.2
Mg
x
Zn
(0.7−
x
)
Fe
2
O
4
(
x
= 0.0, 0.15, 0.25, 0.35, 0.45, 0.55 and 0.70 wt%) system fabricated using flash auto combustion technique. All investigated samples annealed for 2 h at 600 °C. XRD, FTIR and TEM were utilized to evaluate the structural characterization of as-prepared samples. The electrical DC resistivity of the investigated samples is evaluated as a function of frequency and temperature. The initial magnetic permeability (
μ
i
) is dependent on the temperature and was measured at constant frequency 1 kHz and 10 kHz of the sinusoidal wave. A single-phase of spinel structure was formed and with increasing Mg content the peak (311) of 100% intensity decreases, which demonstrates the presence of Mg, which slows down the growth of the crystal as X-ray result. The FTIR spectra of the prepared ferrite samples are distinguished by the presence of two strong absorption bands (
ν
1
= 554 cm
−1
) and (
ν
2
= 449 cm
−1
). The morphological observation is determined by the transmission electron microscopy (TEM) and shows that the particles size ranged between 26 and 39 nm. It can notice shifted Curie temperature (
T
c
) to a higher temperature by increasing Mg content. Mass attenuation coefficient (
μ
m
), mean free path (
λ
), half value layer (
X
1/2
), tenth value layer (
X
1/10
) and effective atomic numbers (
Z
eff
) for the studied samples, have been simulated using FLUKA (2020.0beta.2), while energy change from 15 × 10
–3
to 15
3+
keV with increasing Mg concentration, both μm and Zeff decrease. The largest value of μm and Zeff when
x
= 0% while sample
x
= 0.35% has a minimum value of
λ
,
X
1/10
and
X
1/2
.</description><subject>Absorption spectra</subject><subject>Atoms & subatomic particles</subject><subject>Attenuation coefficients</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Crystal growth</subject><subject>Curie temperature</subject><subject>Evaluation</subject><subject>Ferrites</subject><subject>Investigations</subject><subject>Magnesium</subject><subject>Magnetic fields</subject><subject>Magnetic permeability</subject><subject>Magnetic shielding</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Permeability</subject><subject>Radiation</subject><subject>Radiation shielding</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Sine waves</subject><subject>Structural analysis</subject><subject>Temperature dependence</subject><subject>Transmission electron microscopy</subject><subject>Zinc</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKBDEQRYMoOI7-gKuAW6N59Wspgy8YdaGCuAnpPNoMbbpNumHc-Q_-oV9ixhbcuakqintvUQeAQ4JPCMbFaSS4zDjCFCPMM07QegvMSFYwxEv6tA1muMoKxDNKd8FejCuMcc5ZOQP6vjdqCLI9hqbdTE5t5lfZeDM4BaXXMEjt5OA6D-OLM612voFxGLUzEXYW3jRId73R8NZ9fXwuxlSePfTSd9aE4AYT98GOlW00B799Dh4vzh8WV2h5d3m9OFsixUg1IFrVGTGMakXqWkkra8ltRaq0MqoijOS0slZmmFievs15oQ3GxrIkUzbP2RwcTbl96N5GEwex6sbg00lBecFYyWnBk4pOKhW6GIOxog_uVYZ3QbDY0BQTTZFoih-aYp1MbDLFJPaNCX_R_7i-AZF6e2w</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Henaish, A. M. A.</creator><creator>Mostafa, M.</creator><creator>Salem, B. I.</creator><creator>Zakaly, Hesham M. H.</creator><creator>Issa, Shams A. M.</creator><creator>Weinstein, I. A.</creator><creator>Hemeda, O. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-9166-7497</orcidid></search><sort><creationdate>20201101</creationdate><title>Spectral, electrical, magnetic and radiation shielding studies of Mg-doped Ni–Cu–Zn nanoferrites</title><author>Henaish, A. M. A. ; Mostafa, M. ; Salem, B. I. ; Zakaly, Hesham M. H. ; Issa, Shams A. M. ; Weinstein, I. A. ; Hemeda, O. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-29b51e32dc1bbcafaba4f919e32ec9131629ffa501f4854647de00ef3a4fcf663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectra</topic><topic>Atoms & subatomic particles</topic><topic>Attenuation coefficients</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Crystal growth</topic><topic>Curie temperature</topic><topic>Evaluation</topic><topic>Ferrites</topic><topic>Investigations</topic><topic>Magnesium</topic><topic>Magnetic fields</topic><topic>Magnetic permeability</topic><topic>Magnetic shielding</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Permeability</topic><topic>Radiation</topic><topic>Radiation shielding</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Sine waves</topic><topic>Structural analysis</topic><topic>Temperature dependence</topic><topic>Transmission electron microscopy</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henaish, A. M. A.</creatorcontrib><creatorcontrib>Mostafa, M.</creatorcontrib><creatorcontrib>Salem, B. I.</creatorcontrib><creatorcontrib>Zakaly, Hesham M. H.</creatorcontrib><creatorcontrib>Issa, Shams A. M.</creatorcontrib><creatorcontrib>Weinstein, I. A.</creatorcontrib><creatorcontrib>Hemeda, O. M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henaish, A. M. A.</au><au>Mostafa, M.</au><au>Salem, B. I.</au><au>Zakaly, Hesham M. H.</au><au>Issa, Shams A. M.</au><au>Weinstein, I. A.</au><au>Hemeda, O. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral, electrical, magnetic and radiation shielding studies of Mg-doped Ni–Cu–Zn nanoferrites</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>31</volume><issue>22</issue><spage>20210</spage><epage>20222</epage><pages>20210-20222</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Nanoferrites of Ni
0.1
Cu
0.2
Mg
x
Zn
(0.7−
x
)
Fe
2
O
4
(
x
= 0.0, 0.15, 0.25, 0.35, 0.45, 0.55 and 0.70 wt%) system fabricated using flash auto combustion technique. All investigated samples annealed for 2 h at 600 °C. XRD, FTIR and TEM were utilized to evaluate the structural characterization of as-prepared samples. The electrical DC resistivity of the investigated samples is evaluated as a function of frequency and temperature. The initial magnetic permeability (
μ
i
) is dependent on the temperature and was measured at constant frequency 1 kHz and 10 kHz of the sinusoidal wave. A single-phase of spinel structure was formed and with increasing Mg content the peak (311) of 100% intensity decreases, which demonstrates the presence of Mg, which slows down the growth of the crystal as X-ray result. The FTIR spectra of the prepared ferrite samples are distinguished by the presence of two strong absorption bands (
ν
1
= 554 cm
−1
) and (
ν
2
= 449 cm
−1
). The morphological observation is determined by the transmission electron microscopy (TEM) and shows that the particles size ranged between 26 and 39 nm. It can notice shifted Curie temperature (
T
c
) to a higher temperature by increasing Mg content. Mass attenuation coefficient (
μ
m
), mean free path (
λ
), half value layer (
X
1/2
), tenth value layer (
X
1/10
) and effective atomic numbers (
Z
eff
) for the studied samples, have been simulated using FLUKA (2020.0beta.2), while energy change from 15 × 10
–3
to 15
3+
keV with increasing Mg concentration, both μm and Zeff decrease. The largest value of μm and Zeff when
x
= 0% while sample
x
= 0.35% has a minimum value of
λ
,
X
1/10
and
X
1/2
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-04541-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9166-7497</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2020-11, Vol.31 (22), p.20210-20222 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2473384274 |
source | SpringerLink Journals - AutoHoldings |
subjects | Absorption spectra Atoms & subatomic particles Attenuation coefficients Characterization and Evaluation of Materials Chemistry and Materials Science Copper Crystal growth Curie temperature Evaluation Ferrites Investigations Magnesium Magnetic fields Magnetic permeability Magnetic shielding Materials Science Morphology Nanoparticles Nickel Optical and Electronic Materials Permeability Radiation Radiation shielding Sensors Simulation Sine waves Structural analysis Temperature dependence Transmission electron microscopy Zinc |
title | Spectral, electrical, magnetic and radiation shielding studies of Mg-doped Ni–Cu–Zn nanoferrites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral,%20electrical,%20magnetic%20and%20radiation%20shielding%20studies%20of%20Mg-doped%20Ni%E2%80%93Cu%E2%80%93Zn%20nanoferrites&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Henaish,%20A.%20M.%20A.&rft.date=2020-11-01&rft.volume=31&rft.issue=22&rft.spage=20210&rft.epage=20222&rft.pages=20210-20222&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-04541-x&rft_dat=%3Cproquest_cross%3E2473384274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473384274&rft_id=info:pmid/&rfr_iscdi=true |