Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics

In the present study, pure barium titanate (BT) and Mn-doped barium titanate nanoceramics were synthesized by sol–gel auto-combustion method. X-ray diffraction (XRD) technique was employed to identify the phase purity and crystal structure of prepared nanoparticles. The analysis of XRD suggests that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2020-11, Vol.31 (22), p.19756-19763
Hauptverfasser: More, Smita P., Khedkar, Mangesh V., Andhare, Deepali D., Humbe, Ashok V., Jadhav, K. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19763
container_issue 22
container_start_page 19756
container_title Journal of materials science. Materials in electronics
container_volume 31
creator More, Smita P.
Khedkar, Mangesh V.
Andhare, Deepali D.
Humbe, Ashok V.
Jadhav, K. M.
description In the present study, pure barium titanate (BT) and Mn-doped barium titanate nanoceramics were synthesized by sol–gel auto-combustion method. X-ray diffraction (XRD) technique was employed to identify the phase purity and crystal structure of prepared nanoparticles. The analysis of XRD suggests that the sample x  = 0.00, 0.05 possess a tetragonal structure with space group P 4 mmm , while x  = 0.15, 0.25 shows the hexagonal structure with space group P 63 mmc . Using XRD data, the lattice constant ‘ a ’ and ‘ c ’ was determined for all the samples. The other structural parameters such as c/a unit cell volume, crystallite size, X-ray density, and lattice strain, were also obtained using XRD data. The dielectric study was carried out using LCR-Q meter as a function of frequency. All the dielectric parameters get decreased with increasing frequency. Thus, the doping of Mn in BaTiO 3 leads to phase transformation from tetragonal to hexagonal structure and shows strong frequency dependence.
doi_str_mv 10.1007/s10854-020-04500-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473383940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473383940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2346-c6e949a8ff1ddfd4bd9d5fb630b0c0b46707cee6cd55b94859966044fe5138563</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKeAFwVXZzcfu3vU4keh0ksFbyGbTErKNtsmuwf_vVsreBMG5vK-zwwPIVc53OcA5UPKoRI8gwIy4AIgk0dkkouSZbwqPo_JBGpRZlwUxSk5S2kNAJKzakJ2s-DaAYNB2jm60WGlAyakN-_hlqahSb3vh953gY6T-jiYfoi6vaM-uKgjWqqDpdZji6aP3tBt7LYYe49pD3zSS79gNOjQGYx64026ICdOtwkvf_c5-Xh5Xk7fsvnidTZ9nGemYFxmRmLNa105l1vrLG9sbYVrJIMGDDRcllAaRGmsEE3NK1HXUgLnDkXOKiHZObk-cMePdgOmXq27IYbxpCp4yVjFag5jqjikTOxSiujUNvqNjl8qB7VXqw5q1ahW_ahVezQ7lNIYDiuMf-h_Wt9fzH0h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473383940</pqid></control><display><type>article</type><title>Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics</title><source>Springer Nature - Complete Springer Journals</source><creator>More, Smita P. ; Khedkar, Mangesh V. ; Andhare, Deepali D. ; Humbe, Ashok V. ; Jadhav, K. M.</creator><creatorcontrib>More, Smita P. ; Khedkar, Mangesh V. ; Andhare, Deepali D. ; Humbe, Ashok V. ; Jadhav, K. M.</creatorcontrib><description>In the present study, pure barium titanate (BT) and Mn-doped barium titanate nanoceramics were synthesized by sol–gel auto-combustion method. X-ray diffraction (XRD) technique was employed to identify the phase purity and crystal structure of prepared nanoparticles. The analysis of XRD suggests that the sample x  = 0.00, 0.05 possess a tetragonal structure with space group P 4 mmm , while x  = 0.15, 0.25 shows the hexagonal structure with space group P 63 mmc . Using XRD data, the lattice constant ‘ a ’ and ‘ c ’ was determined for all the samples. The other structural parameters such as c/a unit cell volume, crystallite size, X-ray density, and lattice strain, were also obtained using XRD data. The dielectric study was carried out using LCR-Q meter as a function of frequency. All the dielectric parameters get decreased with increasing frequency. Thus, the doping of Mn in BaTiO 3 leads to phase transformation from tetragonal to hexagonal structure and shows strong frequency dependence.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-04500-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Barium titanates ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal structure ; Crystallites ; Dielectric properties ; Lattice parameters ; Lattice strain ; Manganese ; Materials Science ; Nanoparticles ; Optical and Electronic Materials ; Phase transitions ; Sol-gel processes ; Unit cell ; X-ray diffraction</subject><ispartof>Journal of materials science. Materials in electronics, 2020-11, Vol.31 (22), p.19756-19763</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2346-c6e949a8ff1ddfd4bd9d5fb630b0c0b46707cee6cd55b94859966044fe5138563</citedby><cites>FETCH-LOGICAL-c2346-c6e949a8ff1ddfd4bd9d5fb630b0c0b46707cee6cd55b94859966044fe5138563</cites><orcidid>0000-0001-9911-411X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-04500-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-04500-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>More, Smita P.</creatorcontrib><creatorcontrib>Khedkar, Mangesh V.</creatorcontrib><creatorcontrib>Andhare, Deepali D.</creatorcontrib><creatorcontrib>Humbe, Ashok V.</creatorcontrib><creatorcontrib>Jadhav, K. M.</creatorcontrib><title>Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In the present study, pure barium titanate (BT) and Mn-doped barium titanate nanoceramics were synthesized by sol–gel auto-combustion method. X-ray diffraction (XRD) technique was employed to identify the phase purity and crystal structure of prepared nanoparticles. The analysis of XRD suggests that the sample x  = 0.00, 0.05 possess a tetragonal structure with space group P 4 mmm , while x  = 0.15, 0.25 shows the hexagonal structure with space group P 63 mmc . Using XRD data, the lattice constant ‘ a ’ and ‘ c ’ was determined for all the samples. The other structural parameters such as c/a unit cell volume, crystallite size, X-ray density, and lattice strain, were also obtained using XRD data. The dielectric study was carried out using LCR-Q meter as a function of frequency. All the dielectric parameters get decreased with increasing frequency. Thus, the doping of Mn in BaTiO 3 leads to phase transformation from tetragonal to hexagonal structure and shows strong frequency dependence.</description><subject>Barium titanates</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Crystallites</subject><subject>Dielectric properties</subject><subject>Lattice parameters</subject><subject>Lattice strain</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Phase transitions</subject><subject>Sol-gel processes</subject><subject>Unit cell</subject><subject>X-ray diffraction</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWD_-gKeAFwVXZzcfu3vU4keh0ksFbyGbTErKNtsmuwf_vVsreBMG5vK-zwwPIVc53OcA5UPKoRI8gwIy4AIgk0dkkouSZbwqPo_JBGpRZlwUxSk5S2kNAJKzakJ2s-DaAYNB2jm60WGlAyakN-_hlqahSb3vh953gY6T-jiYfoi6vaM-uKgjWqqDpdZji6aP3tBt7LYYe49pD3zSS79gNOjQGYx64026ICdOtwkvf_c5-Xh5Xk7fsvnidTZ9nGemYFxmRmLNa105l1vrLG9sbYVrJIMGDDRcllAaRGmsEE3NK1HXUgLnDkXOKiHZObk-cMePdgOmXq27IYbxpCp4yVjFag5jqjikTOxSiujUNvqNjl8qB7VXqw5q1ahW_ahVezQ7lNIYDiuMf-h_Wt9fzH0h</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>More, Smita P.</creator><creator>Khedkar, Mangesh V.</creator><creator>Andhare, Deepali D.</creator><creator>Humbe, Ashok V.</creator><creator>Jadhav, K. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-9911-411X</orcidid></search><sort><creationdate>20201101</creationdate><title>Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics</title><author>More, Smita P. ; Khedkar, Mangesh V. ; Andhare, Deepali D. ; Humbe, Ashok V. ; Jadhav, K. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2346-c6e949a8ff1ddfd4bd9d5fb630b0c0b46707cee6cd55b94859966044fe5138563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Barium titanates</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Crystallites</topic><topic>Dielectric properties</topic><topic>Lattice parameters</topic><topic>Lattice strain</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Phase transitions</topic><topic>Sol-gel processes</topic><topic>Unit cell</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>More, Smita P.</creatorcontrib><creatorcontrib>Khedkar, Mangesh V.</creatorcontrib><creatorcontrib>Andhare, Deepali D.</creatorcontrib><creatorcontrib>Humbe, Ashok V.</creatorcontrib><creatorcontrib>Jadhav, K. M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>More, Smita P.</au><au>Khedkar, Mangesh V.</au><au>Andhare, Deepali D.</au><au>Humbe, Ashok V.</au><au>Jadhav, K. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>31</volume><issue>22</issue><spage>19756</spage><epage>19763</epage><pages>19756-19763</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In the present study, pure barium titanate (BT) and Mn-doped barium titanate nanoceramics were synthesized by sol–gel auto-combustion method. X-ray diffraction (XRD) technique was employed to identify the phase purity and crystal structure of prepared nanoparticles. The analysis of XRD suggests that the sample x  = 0.00, 0.05 possess a tetragonal structure with space group P 4 mmm , while x  = 0.15, 0.25 shows the hexagonal structure with space group P 63 mmc . Using XRD data, the lattice constant ‘ a ’ and ‘ c ’ was determined for all the samples. The other structural parameters such as c/a unit cell volume, crystallite size, X-ray density, and lattice strain, were also obtained using XRD data. The dielectric study was carried out using LCR-Q meter as a function of frequency. All the dielectric parameters get decreased with increasing frequency. Thus, the doping of Mn in BaTiO 3 leads to phase transformation from tetragonal to hexagonal structure and shows strong frequency dependence.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-04500-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9911-411X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2020-11, Vol.31 (22), p.19756-19763
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2473383940
source Springer Nature - Complete Springer Journals
subjects Barium titanates
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystal structure
Crystallites
Dielectric properties
Lattice parameters
Lattice strain
Manganese
Materials Science
Nanoparticles
Optical and Electronic Materials
Phase transitions
Sol-gel processes
Unit cell
X-ray diffraction
title Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20manganese%20(Mn)%20substitution%20on%20structural,%20infrared%20and%20dielectric%20properties%20of%20BaTiO3%20nanoceramics&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=More,%20Smita%20P.&rft.date=2020-11-01&rft.volume=31&rft.issue=22&rft.spage=19756&rft.epage=19763&rft.pages=19756-19763&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-04500-6&rft_dat=%3Cproquest_cross%3E2473383940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473383940&rft_id=info:pmid/&rfr_iscdi=true