Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics
In the present study, pure barium titanate (BT) and Mn-doped barium titanate nanoceramics were synthesized by sol–gel auto-combustion method. X-ray diffraction (XRD) technique was employed to identify the phase purity and crystal structure of prepared nanoparticles. The analysis of XRD suggests that...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2020-11, Vol.31 (22), p.19756-19763 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19763 |
---|---|
container_issue | 22 |
container_start_page | 19756 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 31 |
creator | More, Smita P. Khedkar, Mangesh V. Andhare, Deepali D. Humbe, Ashok V. Jadhav, K. M. |
description | In the present study, pure barium titanate (BT) and Mn-doped barium titanate nanoceramics were synthesized by sol–gel auto-combustion method. X-ray diffraction (XRD) technique was employed to identify the phase purity and crystal structure of prepared nanoparticles. The analysis of XRD suggests that the sample
x
= 0.00, 0.05 possess a tetragonal structure with space group
P
4
mmm
, while
x
= 0.15, 0.25 shows the hexagonal structure with space group
P
63
mmc
. Using XRD data, the lattice constant ‘
a
’ and ‘
c
’ was determined for all the samples. The other structural parameters such as
c/a
unit cell volume, crystallite size, X-ray density, and lattice strain, were also obtained using XRD data. The dielectric study was carried out using LCR-Q meter as a function of frequency. All the dielectric parameters get decreased with increasing frequency. Thus, the doping of Mn in BaTiO
3
leads to phase transformation from tetragonal to hexagonal structure and shows strong frequency dependence. |
doi_str_mv | 10.1007/s10854-020-04500-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473383940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473383940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2346-c6e949a8ff1ddfd4bd9d5fb630b0c0b46707cee6cd55b94859966044fe5138563</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKeAFwVXZzcfu3vU4keh0ksFbyGbTErKNtsmuwf_vVsreBMG5vK-zwwPIVc53OcA5UPKoRI8gwIy4AIgk0dkkouSZbwqPo_JBGpRZlwUxSk5S2kNAJKzakJ2s-DaAYNB2jm60WGlAyakN-_hlqahSb3vh953gY6T-jiYfoi6vaM-uKgjWqqDpdZji6aP3tBt7LYYe49pD3zSS79gNOjQGYx64026ICdOtwkvf_c5-Xh5Xk7fsvnidTZ9nGemYFxmRmLNa105l1vrLG9sbYVrJIMGDDRcllAaRGmsEE3NK1HXUgLnDkXOKiHZObk-cMePdgOmXq27IYbxpCp4yVjFag5jqjikTOxSiujUNvqNjl8qB7VXqw5q1ahW_ahVezQ7lNIYDiuMf-h_Wt9fzH0h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473383940</pqid></control><display><type>article</type><title>Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics</title><source>Springer Nature - Complete Springer Journals</source><creator>More, Smita P. ; Khedkar, Mangesh V. ; Andhare, Deepali D. ; Humbe, Ashok V. ; Jadhav, K. M.</creator><creatorcontrib>More, Smita P. ; Khedkar, Mangesh V. ; Andhare, Deepali D. ; Humbe, Ashok V. ; Jadhav, K. M.</creatorcontrib><description>In the present study, pure barium titanate (BT) and Mn-doped barium titanate nanoceramics were synthesized by sol–gel auto-combustion method. X-ray diffraction (XRD) technique was employed to identify the phase purity and crystal structure of prepared nanoparticles. The analysis of XRD suggests that the sample
x
= 0.00, 0.05 possess a tetragonal structure with space group
P
4
mmm
, while
x
= 0.15, 0.25 shows the hexagonal structure with space group
P
63
mmc
. Using XRD data, the lattice constant ‘
a
’ and ‘
c
’ was determined for all the samples. The other structural parameters such as
c/a
unit cell volume, crystallite size, X-ray density, and lattice strain, were also obtained using XRD data. The dielectric study was carried out using LCR-Q meter as a function of frequency. All the dielectric parameters get decreased with increasing frequency. Thus, the doping of Mn in BaTiO
3
leads to phase transformation from tetragonal to hexagonal structure and shows strong frequency dependence.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-04500-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Barium titanates ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal structure ; Crystallites ; Dielectric properties ; Lattice parameters ; Lattice strain ; Manganese ; Materials Science ; Nanoparticles ; Optical and Electronic Materials ; Phase transitions ; Sol-gel processes ; Unit cell ; X-ray diffraction</subject><ispartof>Journal of materials science. Materials in electronics, 2020-11, Vol.31 (22), p.19756-19763</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2346-c6e949a8ff1ddfd4bd9d5fb630b0c0b46707cee6cd55b94859966044fe5138563</citedby><cites>FETCH-LOGICAL-c2346-c6e949a8ff1ddfd4bd9d5fb630b0c0b46707cee6cd55b94859966044fe5138563</cites><orcidid>0000-0001-9911-411X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-04500-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-04500-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>More, Smita P.</creatorcontrib><creatorcontrib>Khedkar, Mangesh V.</creatorcontrib><creatorcontrib>Andhare, Deepali D.</creatorcontrib><creatorcontrib>Humbe, Ashok V.</creatorcontrib><creatorcontrib>Jadhav, K. M.</creatorcontrib><title>Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In the present study, pure barium titanate (BT) and Mn-doped barium titanate nanoceramics were synthesized by sol–gel auto-combustion method. X-ray diffraction (XRD) technique was employed to identify the phase purity and crystal structure of prepared nanoparticles. The analysis of XRD suggests that the sample
x
= 0.00, 0.05 possess a tetragonal structure with space group
P
4
mmm
, while
x
= 0.15, 0.25 shows the hexagonal structure with space group
P
63
mmc
. Using XRD data, the lattice constant ‘
a
’ and ‘
c
’ was determined for all the samples. The other structural parameters such as
c/a
unit cell volume, crystallite size, X-ray density, and lattice strain, were also obtained using XRD data. The dielectric study was carried out using LCR-Q meter as a function of frequency. All the dielectric parameters get decreased with increasing frequency. Thus, the doping of Mn in BaTiO
3
leads to phase transformation from tetragonal to hexagonal structure and shows strong frequency dependence.</description><subject>Barium titanates</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Crystallites</subject><subject>Dielectric properties</subject><subject>Lattice parameters</subject><subject>Lattice strain</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Phase transitions</subject><subject>Sol-gel processes</subject><subject>Unit cell</subject><subject>X-ray diffraction</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWD_-gKeAFwVXZzcfu3vU4keh0ksFbyGbTErKNtsmuwf_vVsreBMG5vK-zwwPIVc53OcA5UPKoRI8gwIy4AIgk0dkkouSZbwqPo_JBGpRZlwUxSk5S2kNAJKzakJ2s-DaAYNB2jm60WGlAyakN-_hlqahSb3vh953gY6T-jiYfoi6vaM-uKgjWqqDpdZji6aP3tBt7LYYe49pD3zSS79gNOjQGYx64026ICdOtwkvf_c5-Xh5Xk7fsvnidTZ9nGemYFxmRmLNa105l1vrLG9sbYVrJIMGDDRcllAaRGmsEE3NK1HXUgLnDkXOKiHZObk-cMePdgOmXq27IYbxpCp4yVjFag5jqjikTOxSiujUNvqNjl8qB7VXqw5q1ahW_ahVezQ7lNIYDiuMf-h_Wt9fzH0h</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>More, Smita P.</creator><creator>Khedkar, Mangesh V.</creator><creator>Andhare, Deepali D.</creator><creator>Humbe, Ashok V.</creator><creator>Jadhav, K. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-9911-411X</orcidid></search><sort><creationdate>20201101</creationdate><title>Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics</title><author>More, Smita P. ; Khedkar, Mangesh V. ; Andhare, Deepali D. ; Humbe, Ashok V. ; Jadhav, K. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2346-c6e949a8ff1ddfd4bd9d5fb630b0c0b46707cee6cd55b94859966044fe5138563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Barium titanates</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Crystallites</topic><topic>Dielectric properties</topic><topic>Lattice parameters</topic><topic>Lattice strain</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Phase transitions</topic><topic>Sol-gel processes</topic><topic>Unit cell</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>More, Smita P.</creatorcontrib><creatorcontrib>Khedkar, Mangesh V.</creatorcontrib><creatorcontrib>Andhare, Deepali D.</creatorcontrib><creatorcontrib>Humbe, Ashok V.</creatorcontrib><creatorcontrib>Jadhav, K. M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>More, Smita P.</au><au>Khedkar, Mangesh V.</au><au>Andhare, Deepali D.</au><au>Humbe, Ashok V.</au><au>Jadhav, K. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>31</volume><issue>22</issue><spage>19756</spage><epage>19763</epage><pages>19756-19763</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In the present study, pure barium titanate (BT) and Mn-doped barium titanate nanoceramics were synthesized by sol–gel auto-combustion method. X-ray diffraction (XRD) technique was employed to identify the phase purity and crystal structure of prepared nanoparticles. The analysis of XRD suggests that the sample
x
= 0.00, 0.05 possess a tetragonal structure with space group
P
4
mmm
, while
x
= 0.15, 0.25 shows the hexagonal structure with space group
P
63
mmc
. Using XRD data, the lattice constant ‘
a
’ and ‘
c
’ was determined for all the samples. The other structural parameters such as
c/a
unit cell volume, crystallite size, X-ray density, and lattice strain, were also obtained using XRD data. The dielectric study was carried out using LCR-Q meter as a function of frequency. All the dielectric parameters get decreased with increasing frequency. Thus, the doping of Mn in BaTiO
3
leads to phase transformation from tetragonal to hexagonal structure and shows strong frequency dependence.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-04500-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9911-411X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2020-11, Vol.31 (22), p.19756-19763 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2473383940 |
source | Springer Nature - Complete Springer Journals |
subjects | Barium titanates Characterization and Evaluation of Materials Chemistry and Materials Science Crystal structure Crystallites Dielectric properties Lattice parameters Lattice strain Manganese Materials Science Nanoparticles Optical and Electronic Materials Phase transitions Sol-gel processes Unit cell X-ray diffraction |
title | Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20manganese%20(Mn)%20substitution%20on%20structural,%20infrared%20and%20dielectric%20properties%20of%20BaTiO3%20nanoceramics&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=More,%20Smita%20P.&rft.date=2020-11-01&rft.volume=31&rft.issue=22&rft.spage=19756&rft.epage=19763&rft.pages=19756-19763&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-04500-6&rft_dat=%3Cproquest_cross%3E2473383940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473383940&rft_id=info:pmid/&rfr_iscdi=true |