Robust nanofibrillated cellulose composite SERS substrate for capillary preconcentration and trace level detection of organic molecules
Preconcentration of organic analytes from an aqueous solution onto a substrate surface can significantly improve trace level analyte detection by Raman spectroscopy. Nanofibrillated cellulose (NFC)-based three dimensional (3D) substrates have great potential for this application since they can readi...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2020-11, Vol.27 (17), p.10119-10137 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10137 |
---|---|
container_issue | 17 |
container_start_page | 10119 |
container_title | Cellulose (London) |
container_volume | 27 |
creator | Hossen, Muhammad R. Talbot, Matthew W. Gramlich, William M. Mason, Michael D. |
description | Preconcentration of organic analytes from an aqueous solution onto a substrate surface can significantly improve trace level analyte detection by Raman spectroscopy. Nanofibrillated cellulose (NFC)-based three dimensional (3D) substrates have great potential for this application since they can readily absorb water when exposed to an aqueous analyte solution while adsorbing organic molecules from the solution. However, the transport of organic analytes inside the substrate along with water, loss of mechanical robustness, and disintegration of the 3D structure in water limit the use of porous NFC substrates in aqueous environments. To overcome these deficiencies, a chemically crosslinked network of methacrylated carboxymethyl cellulose was incorporated into the NFC matrices, which improves the stability and robustness of the substrates in water. Application of a polydimethyl siloxane-based hydrophobic coating on four of the five analyte exposed surfaces further improves preconcentration efficiency by forcing the analyte solutions to pass through one hydrophilic surface only. Samples with a range of porosities were investigated to optimize sampling time, solution uptake volume, and substrate robustness in water. Using this substrate, parts-per-million detection sensitivity for organic probe molecules in aqueous solution was possible. Incorporation of silver nanoparticles within the substrates further enhanced substrate sensitivity to parts-per-trillion level detection of probe molecules, due to the Raman signal enhancement by surface enhanced Raman scattering (SERS) effect. A model is presented here which describes the linearity, saturation, and depletion of the SERS signal.
Graphic abstract |
doi_str_mv | 10.1007/s10570-020-03478-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473380636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473380636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-d9dd83ea34f489c2f1bcb6fbb70867330026dcd956832c64091a4c79c6e90d963</originalsourceid><addsrcrecordid>eNp9kEtLxTAQhYMoeH38AVcB19Vp0ps2SxFfIAg-wF1oJ1Op5CY1aYX7C_zb5noFdy6GDJzznSGHsZMSzkqA-jyVsKyhAJFHVnVTrHfYolzWomga8brLFqCVzrLU--wgpXcA0LUoF-zrMXRzmrhvfeiHLg7OtRNZjuTc7EIijmE1hjRMxJ-uHp94mrs0xezhfYgc23FDxDUfI2HwSH4jDsHz1luedyTu6JMctzQR_iih5yG-tX5AvgqOcHaUjthe37pEx7_vIXu5vnq-vC3uH27uLi_uC5RLNRVWW9tIamXVV41G0ZcddqrvuhoaVUsJIJRFq5eqkQJVBbpsK6w1KtJgtZKH7HSbO8bwMVOazHuYo88njahyQANKblxi68IYUorUmzEOq_xNU4LZFG62hZtcuPkp3KwzJLdQymb_RvEv-h_qG-CBh6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473380636</pqid></control><display><type>article</type><title>Robust nanofibrillated cellulose composite SERS substrate for capillary preconcentration and trace level detection of organic molecules</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hossen, Muhammad R. ; Talbot, Matthew W. ; Gramlich, William M. ; Mason, Michael D.</creator><creatorcontrib>Hossen, Muhammad R. ; Talbot, Matthew W. ; Gramlich, William M. ; Mason, Michael D.</creatorcontrib><description>Preconcentration of organic analytes from an aqueous solution onto a substrate surface can significantly improve trace level analyte detection by Raman spectroscopy. Nanofibrillated cellulose (NFC)-based three dimensional (3D) substrates have great potential for this application since they can readily absorb water when exposed to an aqueous analyte solution while adsorbing organic molecules from the solution. However, the transport of organic analytes inside the substrate along with water, loss of mechanical robustness, and disintegration of the 3D structure in water limit the use of porous NFC substrates in aqueous environments. To overcome these deficiencies, a chemically crosslinked network of methacrylated carboxymethyl cellulose was incorporated into the NFC matrices, which improves the stability and robustness of the substrates in water. Application of a polydimethyl siloxane-based hydrophobic coating on four of the five analyte exposed surfaces further improves preconcentration efficiency by forcing the analyte solutions to pass through one hydrophilic surface only. Samples with a range of porosities were investigated to optimize sampling time, solution uptake volume, and substrate robustness in water. Using this substrate, parts-per-million detection sensitivity for organic probe molecules in aqueous solution was possible. Incorporation of silver nanoparticles within the substrates further enhanced substrate sensitivity to parts-per-trillion level detection of probe molecules, due to the Raman signal enhancement by surface enhanced Raman scattering (SERS) effect. A model is presented here which describes the linearity, saturation, and depletion of the SERS signal.
Graphic abstract</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-020-03478-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aqueous environments ; Aqueous solutions ; Bioorganic Chemistry ; Carboxymethyl cellulose ; Cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Depletion ; Disintegration ; Glass ; Linearity ; Nanoparticles ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polydimethylsiloxane ; Polymer Sciences ; Raman spectra ; Raman spectroscopy ; Sensitivity enhancement ; Silver ; Substrates ; Sustainable Development</subject><ispartof>Cellulose (London), 2020-11, Vol.27 (17), p.10119-10137</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-d9dd83ea34f489c2f1bcb6fbb70867330026dcd956832c64091a4c79c6e90d963</citedby><cites>FETCH-LOGICAL-c356t-d9dd83ea34f489c2f1bcb6fbb70867330026dcd956832c64091a4c79c6e90d963</cites><orcidid>0000-0002-8524-4666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-020-03478-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-020-03478-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hossen, Muhammad R.</creatorcontrib><creatorcontrib>Talbot, Matthew W.</creatorcontrib><creatorcontrib>Gramlich, William M.</creatorcontrib><creatorcontrib>Mason, Michael D.</creatorcontrib><title>Robust nanofibrillated cellulose composite SERS substrate for capillary preconcentration and trace level detection of organic molecules</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Preconcentration of organic analytes from an aqueous solution onto a substrate surface can significantly improve trace level analyte detection by Raman spectroscopy. Nanofibrillated cellulose (NFC)-based three dimensional (3D) substrates have great potential for this application since they can readily absorb water when exposed to an aqueous analyte solution while adsorbing organic molecules from the solution. However, the transport of organic analytes inside the substrate along with water, loss of mechanical robustness, and disintegration of the 3D structure in water limit the use of porous NFC substrates in aqueous environments. To overcome these deficiencies, a chemically crosslinked network of methacrylated carboxymethyl cellulose was incorporated into the NFC matrices, which improves the stability and robustness of the substrates in water. Application of a polydimethyl siloxane-based hydrophobic coating on four of the five analyte exposed surfaces further improves preconcentration efficiency by forcing the analyte solutions to pass through one hydrophilic surface only. Samples with a range of porosities were investigated to optimize sampling time, solution uptake volume, and substrate robustness in water. Using this substrate, parts-per-million detection sensitivity for organic probe molecules in aqueous solution was possible. Incorporation of silver nanoparticles within the substrates further enhanced substrate sensitivity to parts-per-trillion level detection of probe molecules, due to the Raman signal enhancement by surface enhanced Raman scattering (SERS) effect. A model is presented here which describes the linearity, saturation, and depletion of the SERS signal.
Graphic abstract</description><subject>Aqueous environments</subject><subject>Aqueous solutions</subject><subject>Bioorganic Chemistry</subject><subject>Carboxymethyl cellulose</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Depletion</subject><subject>Disintegration</subject><subject>Glass</subject><subject>Linearity</subject><subject>Nanoparticles</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polydimethylsiloxane</subject><subject>Polymer Sciences</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Sensitivity enhancement</subject><subject>Silver</subject><subject>Substrates</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLxTAQhYMoeH38AVcB19Vp0ps2SxFfIAg-wF1oJ1Op5CY1aYX7C_zb5noFdy6GDJzznSGHsZMSzkqA-jyVsKyhAJFHVnVTrHfYolzWomga8brLFqCVzrLU--wgpXcA0LUoF-zrMXRzmrhvfeiHLg7OtRNZjuTc7EIijmE1hjRMxJ-uHp94mrs0xezhfYgc23FDxDUfI2HwSH4jDsHz1luedyTu6JMctzQR_iih5yG-tX5AvgqOcHaUjthe37pEx7_vIXu5vnq-vC3uH27uLi_uC5RLNRVWW9tIamXVV41G0ZcddqrvuhoaVUsJIJRFq5eqkQJVBbpsK6w1KtJgtZKH7HSbO8bwMVOazHuYo88njahyQANKblxi68IYUorUmzEOq_xNU4LZFG62hZtcuPkp3KwzJLdQymb_RvEv-h_qG-CBh6E</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Hossen, Muhammad R.</creator><creator>Talbot, Matthew W.</creator><creator>Gramlich, William M.</creator><creator>Mason, Michael D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8524-4666</orcidid></search><sort><creationdate>20201101</creationdate><title>Robust nanofibrillated cellulose composite SERS substrate for capillary preconcentration and trace level detection of organic molecules</title><author>Hossen, Muhammad R. ; Talbot, Matthew W. ; Gramlich, William M. ; Mason, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-d9dd83ea34f489c2f1bcb6fbb70867330026dcd956832c64091a4c79c6e90d963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous environments</topic><topic>Aqueous solutions</topic><topic>Bioorganic Chemistry</topic><topic>Carboxymethyl cellulose</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Depletion</topic><topic>Disintegration</topic><topic>Glass</topic><topic>Linearity</topic><topic>Nanoparticles</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polydimethylsiloxane</topic><topic>Polymer Sciences</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Sensitivity enhancement</topic><topic>Silver</topic><topic>Substrates</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossen, Muhammad R.</creatorcontrib><creatorcontrib>Talbot, Matthew W.</creatorcontrib><creatorcontrib>Gramlich, William M.</creatorcontrib><creatorcontrib>Mason, Michael D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossen, Muhammad R.</au><au>Talbot, Matthew W.</au><au>Gramlich, William M.</au><au>Mason, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust nanofibrillated cellulose composite SERS substrate for capillary preconcentration and trace level detection of organic molecules</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>27</volume><issue>17</issue><spage>10119</spage><epage>10137</epage><pages>10119-10137</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Preconcentration of organic analytes from an aqueous solution onto a substrate surface can significantly improve trace level analyte detection by Raman spectroscopy. Nanofibrillated cellulose (NFC)-based three dimensional (3D) substrates have great potential for this application since they can readily absorb water when exposed to an aqueous analyte solution while adsorbing organic molecules from the solution. However, the transport of organic analytes inside the substrate along with water, loss of mechanical robustness, and disintegration of the 3D structure in water limit the use of porous NFC substrates in aqueous environments. To overcome these deficiencies, a chemically crosslinked network of methacrylated carboxymethyl cellulose was incorporated into the NFC matrices, which improves the stability and robustness of the substrates in water. Application of a polydimethyl siloxane-based hydrophobic coating on four of the five analyte exposed surfaces further improves preconcentration efficiency by forcing the analyte solutions to pass through one hydrophilic surface only. Samples with a range of porosities were investigated to optimize sampling time, solution uptake volume, and substrate robustness in water. Using this substrate, parts-per-million detection sensitivity for organic probe molecules in aqueous solution was possible. Incorporation of silver nanoparticles within the substrates further enhanced substrate sensitivity to parts-per-trillion level detection of probe molecules, due to the Raman signal enhancement by surface enhanced Raman scattering (SERS) effect. A model is presented here which describes the linearity, saturation, and depletion of the SERS signal.
Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-020-03478-y</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8524-4666</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2020-11, Vol.27 (17), p.10119-10137 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2473380636 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aqueous environments Aqueous solutions Bioorganic Chemistry Carboxymethyl cellulose Cellulose Ceramics Chemistry Chemistry and Materials Science Composites Depletion Disintegration Glass Linearity Nanoparticles Natural Materials Organic Chemistry Original Research Physical Chemistry Polydimethylsiloxane Polymer Sciences Raman spectra Raman spectroscopy Sensitivity enhancement Silver Substrates Sustainable Development |
title | Robust nanofibrillated cellulose composite SERS substrate for capillary preconcentration and trace level detection of organic molecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20nanofibrillated%20cellulose%20composite%20SERS%20substrate%20for%20capillary%20preconcentration%20and%20trace%20level%20detection%20of%20organic%20molecules&rft.jtitle=Cellulose%20(London)&rft.au=Hossen,%20Muhammad%20R.&rft.date=2020-11-01&rft.volume=27&rft.issue=17&rft.spage=10119&rft.epage=10137&rft.pages=10119-10137&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-020-03478-y&rft_dat=%3Cproquest_cross%3E2473380636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473380636&rft_id=info:pmid/&rfr_iscdi=true |