Robust nanofibrillated cellulose composite SERS substrate for capillary preconcentration and trace level detection of organic molecules

Preconcentration of organic analytes from an aqueous solution onto a substrate surface can significantly improve trace level analyte detection by Raman spectroscopy. Nanofibrillated cellulose (NFC)-based three dimensional (3D) substrates have great potential for this application since they can readi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2020-11, Vol.27 (17), p.10119-10137
Hauptverfasser: Hossen, Muhammad R., Talbot, Matthew W., Gramlich, William M., Mason, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10137
container_issue 17
container_start_page 10119
container_title Cellulose (London)
container_volume 27
creator Hossen, Muhammad R.
Talbot, Matthew W.
Gramlich, William M.
Mason, Michael D.
description Preconcentration of organic analytes from an aqueous solution onto a substrate surface can significantly improve trace level analyte detection by Raman spectroscopy. Nanofibrillated cellulose (NFC)-based three dimensional (3D) substrates have great potential for this application since they can readily absorb water when exposed to an aqueous analyte solution while adsorbing organic molecules from the solution. However, the transport of organic analytes inside the substrate along with water, loss of mechanical robustness, and disintegration of the 3D structure in water limit the use of porous NFC substrates in aqueous environments. To overcome these deficiencies, a chemically crosslinked network of methacrylated carboxymethyl cellulose was incorporated into the NFC matrices, which improves the stability and robustness of the substrates in water. Application of a polydimethyl siloxane-based hydrophobic coating on four of the five analyte exposed surfaces further improves preconcentration efficiency by forcing the analyte solutions to pass through one hydrophilic surface only. Samples with a range of porosities were investigated to optimize sampling time, solution uptake volume, and substrate robustness in water. Using this substrate, parts-per-million detection sensitivity for organic probe molecules in aqueous solution was possible. Incorporation of silver nanoparticles within the substrates further enhanced substrate sensitivity to parts-per-trillion level detection of probe molecules, due to the Raman signal enhancement by surface enhanced Raman scattering (SERS) effect. A model is presented here which describes the linearity, saturation, and depletion of the SERS signal. Graphic abstract
doi_str_mv 10.1007/s10570-020-03478-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473380636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473380636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-d9dd83ea34f489c2f1bcb6fbb70867330026dcd956832c64091a4c79c6e90d963</originalsourceid><addsrcrecordid>eNp9kEtLxTAQhYMoeH38AVcB19Vp0ps2SxFfIAg-wF1oJ1Op5CY1aYX7C_zb5noFdy6GDJzznSGHsZMSzkqA-jyVsKyhAJFHVnVTrHfYolzWomga8brLFqCVzrLU--wgpXcA0LUoF-zrMXRzmrhvfeiHLg7OtRNZjuTc7EIijmE1hjRMxJ-uHp94mrs0xezhfYgc23FDxDUfI2HwSH4jDsHz1luedyTu6JMctzQR_iih5yG-tX5AvgqOcHaUjthe37pEx7_vIXu5vnq-vC3uH27uLi_uC5RLNRVWW9tIamXVV41G0ZcddqrvuhoaVUsJIJRFq5eqkQJVBbpsK6w1KtJgtZKH7HSbO8bwMVOazHuYo88njahyQANKblxi68IYUorUmzEOq_xNU4LZFG62hZtcuPkp3KwzJLdQymb_RvEv-h_qG-CBh6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473380636</pqid></control><display><type>article</type><title>Robust nanofibrillated cellulose composite SERS substrate for capillary preconcentration and trace level detection of organic molecules</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hossen, Muhammad R. ; Talbot, Matthew W. ; Gramlich, William M. ; Mason, Michael D.</creator><creatorcontrib>Hossen, Muhammad R. ; Talbot, Matthew W. ; Gramlich, William M. ; Mason, Michael D.</creatorcontrib><description>Preconcentration of organic analytes from an aqueous solution onto a substrate surface can significantly improve trace level analyte detection by Raman spectroscopy. Nanofibrillated cellulose (NFC)-based three dimensional (3D) substrates have great potential for this application since they can readily absorb water when exposed to an aqueous analyte solution while adsorbing organic molecules from the solution. However, the transport of organic analytes inside the substrate along with water, loss of mechanical robustness, and disintegration of the 3D structure in water limit the use of porous NFC substrates in aqueous environments. To overcome these deficiencies, a chemically crosslinked network of methacrylated carboxymethyl cellulose was incorporated into the NFC matrices, which improves the stability and robustness of the substrates in water. Application of a polydimethyl siloxane-based hydrophobic coating on four of the five analyte exposed surfaces further improves preconcentration efficiency by forcing the analyte solutions to pass through one hydrophilic surface only. Samples with a range of porosities were investigated to optimize sampling time, solution uptake volume, and substrate robustness in water. Using this substrate, parts-per-million detection sensitivity for organic probe molecules in aqueous solution was possible. Incorporation of silver nanoparticles within the substrates further enhanced substrate sensitivity to parts-per-trillion level detection of probe molecules, due to the Raman signal enhancement by surface enhanced Raman scattering (SERS) effect. A model is presented here which describes the linearity, saturation, and depletion of the SERS signal. Graphic abstract</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-020-03478-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aqueous environments ; Aqueous solutions ; Bioorganic Chemistry ; Carboxymethyl cellulose ; Cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Depletion ; Disintegration ; Glass ; Linearity ; Nanoparticles ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polydimethylsiloxane ; Polymer Sciences ; Raman spectra ; Raman spectroscopy ; Sensitivity enhancement ; Silver ; Substrates ; Sustainable Development</subject><ispartof>Cellulose (London), 2020-11, Vol.27 (17), p.10119-10137</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-d9dd83ea34f489c2f1bcb6fbb70867330026dcd956832c64091a4c79c6e90d963</citedby><cites>FETCH-LOGICAL-c356t-d9dd83ea34f489c2f1bcb6fbb70867330026dcd956832c64091a4c79c6e90d963</cites><orcidid>0000-0002-8524-4666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-020-03478-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-020-03478-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hossen, Muhammad R.</creatorcontrib><creatorcontrib>Talbot, Matthew W.</creatorcontrib><creatorcontrib>Gramlich, William M.</creatorcontrib><creatorcontrib>Mason, Michael D.</creatorcontrib><title>Robust nanofibrillated cellulose composite SERS substrate for capillary preconcentration and trace level detection of organic molecules</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Preconcentration of organic analytes from an aqueous solution onto a substrate surface can significantly improve trace level analyte detection by Raman spectroscopy. Nanofibrillated cellulose (NFC)-based three dimensional (3D) substrates have great potential for this application since they can readily absorb water when exposed to an aqueous analyte solution while adsorbing organic molecules from the solution. However, the transport of organic analytes inside the substrate along with water, loss of mechanical robustness, and disintegration of the 3D structure in water limit the use of porous NFC substrates in aqueous environments. To overcome these deficiencies, a chemically crosslinked network of methacrylated carboxymethyl cellulose was incorporated into the NFC matrices, which improves the stability and robustness of the substrates in water. Application of a polydimethyl siloxane-based hydrophobic coating on four of the five analyte exposed surfaces further improves preconcentration efficiency by forcing the analyte solutions to pass through one hydrophilic surface only. Samples with a range of porosities were investigated to optimize sampling time, solution uptake volume, and substrate robustness in water. Using this substrate, parts-per-million detection sensitivity for organic probe molecules in aqueous solution was possible. Incorporation of silver nanoparticles within the substrates further enhanced substrate sensitivity to parts-per-trillion level detection of probe molecules, due to the Raman signal enhancement by surface enhanced Raman scattering (SERS) effect. A model is presented here which describes the linearity, saturation, and depletion of the SERS signal. Graphic abstract</description><subject>Aqueous environments</subject><subject>Aqueous solutions</subject><subject>Bioorganic Chemistry</subject><subject>Carboxymethyl cellulose</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Depletion</subject><subject>Disintegration</subject><subject>Glass</subject><subject>Linearity</subject><subject>Nanoparticles</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polydimethylsiloxane</subject><subject>Polymer Sciences</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Sensitivity enhancement</subject><subject>Silver</subject><subject>Substrates</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLxTAQhYMoeH38AVcB19Vp0ps2SxFfIAg-wF1oJ1Op5CY1aYX7C_zb5noFdy6GDJzznSGHsZMSzkqA-jyVsKyhAJFHVnVTrHfYolzWomga8brLFqCVzrLU--wgpXcA0LUoF-zrMXRzmrhvfeiHLg7OtRNZjuTc7EIijmE1hjRMxJ-uHp94mrs0xezhfYgc23FDxDUfI2HwSH4jDsHz1luedyTu6JMctzQR_iih5yG-tX5AvgqOcHaUjthe37pEx7_vIXu5vnq-vC3uH27uLi_uC5RLNRVWW9tIamXVV41G0ZcddqrvuhoaVUsJIJRFq5eqkQJVBbpsK6w1KtJgtZKH7HSbO8bwMVOazHuYo88njahyQANKblxi68IYUorUmzEOq_xNU4LZFG62hZtcuPkp3KwzJLdQymb_RvEv-h_qG-CBh6E</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Hossen, Muhammad R.</creator><creator>Talbot, Matthew W.</creator><creator>Gramlich, William M.</creator><creator>Mason, Michael D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8524-4666</orcidid></search><sort><creationdate>20201101</creationdate><title>Robust nanofibrillated cellulose composite SERS substrate for capillary preconcentration and trace level detection of organic molecules</title><author>Hossen, Muhammad R. ; Talbot, Matthew W. ; Gramlich, William M. ; Mason, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-d9dd83ea34f489c2f1bcb6fbb70867330026dcd956832c64091a4c79c6e90d963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous environments</topic><topic>Aqueous solutions</topic><topic>Bioorganic Chemistry</topic><topic>Carboxymethyl cellulose</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Depletion</topic><topic>Disintegration</topic><topic>Glass</topic><topic>Linearity</topic><topic>Nanoparticles</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polydimethylsiloxane</topic><topic>Polymer Sciences</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Sensitivity enhancement</topic><topic>Silver</topic><topic>Substrates</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossen, Muhammad R.</creatorcontrib><creatorcontrib>Talbot, Matthew W.</creatorcontrib><creatorcontrib>Gramlich, William M.</creatorcontrib><creatorcontrib>Mason, Michael D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossen, Muhammad R.</au><au>Talbot, Matthew W.</au><au>Gramlich, William M.</au><au>Mason, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust nanofibrillated cellulose composite SERS substrate for capillary preconcentration and trace level detection of organic molecules</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>27</volume><issue>17</issue><spage>10119</spage><epage>10137</epage><pages>10119-10137</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Preconcentration of organic analytes from an aqueous solution onto a substrate surface can significantly improve trace level analyte detection by Raman spectroscopy. Nanofibrillated cellulose (NFC)-based three dimensional (3D) substrates have great potential for this application since they can readily absorb water when exposed to an aqueous analyte solution while adsorbing organic molecules from the solution. However, the transport of organic analytes inside the substrate along with water, loss of mechanical robustness, and disintegration of the 3D structure in water limit the use of porous NFC substrates in aqueous environments. To overcome these deficiencies, a chemically crosslinked network of methacrylated carboxymethyl cellulose was incorporated into the NFC matrices, which improves the stability and robustness of the substrates in water. Application of a polydimethyl siloxane-based hydrophobic coating on four of the five analyte exposed surfaces further improves preconcentration efficiency by forcing the analyte solutions to pass through one hydrophilic surface only. Samples with a range of porosities were investigated to optimize sampling time, solution uptake volume, and substrate robustness in water. Using this substrate, parts-per-million detection sensitivity for organic probe molecules in aqueous solution was possible. Incorporation of silver nanoparticles within the substrates further enhanced substrate sensitivity to parts-per-trillion level detection of probe molecules, due to the Raman signal enhancement by surface enhanced Raman scattering (SERS) effect. A model is presented here which describes the linearity, saturation, and depletion of the SERS signal. Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-020-03478-y</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8524-4666</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2020-11, Vol.27 (17), p.10119-10137
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2473380636
source SpringerLink Journals - AutoHoldings
subjects Aqueous environments
Aqueous solutions
Bioorganic Chemistry
Carboxymethyl cellulose
Cellulose
Ceramics
Chemistry
Chemistry and Materials Science
Composites
Depletion
Disintegration
Glass
Linearity
Nanoparticles
Natural Materials
Organic Chemistry
Original Research
Physical Chemistry
Polydimethylsiloxane
Polymer Sciences
Raman spectra
Raman spectroscopy
Sensitivity enhancement
Silver
Substrates
Sustainable Development
title Robust nanofibrillated cellulose composite SERS substrate for capillary preconcentration and trace level detection of organic molecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20nanofibrillated%20cellulose%20composite%20SERS%20substrate%20for%20capillary%20preconcentration%20and%20trace%20level%20detection%20of%20organic%20molecules&rft.jtitle=Cellulose%20(London)&rft.au=Hossen,%20Muhammad%20R.&rft.date=2020-11-01&rft.volume=27&rft.issue=17&rft.spage=10119&rft.epage=10137&rft.pages=10119-10137&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-020-03478-y&rft_dat=%3Cproquest_cross%3E2473380636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473380636&rft_id=info:pmid/&rfr_iscdi=true