A Small Nimble In Situ Fine-Scale Flux Method for Measuring Tree Stem Greenhouse Gas Emissions and Processes (S.N.I.F.F)

Tree stem methane emissions are gaining increasing attention as an overlooked atmospheric source pathway. Existing methods for measuring tree stem greenhouse gas fluxes and isotopes may provide robust integrated emission estimates, but due to their coarse resolution, the capacity to derive insights...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecosystems (New York) 2020-12, Vol.23 (8), p.1676-1689
Hauptverfasser: Jeffrey, Luke C., Maher, Damien T., Tait, Douglas R., Johnston, Scott G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1689
container_issue 8
container_start_page 1676
container_title Ecosystems (New York)
container_volume 23
creator Jeffrey, Luke C.
Maher, Damien T.
Tait, Douglas R.
Johnston, Scott G.
description Tree stem methane emissions are gaining increasing attention as an overlooked atmospheric source pathway. Existing methods for measuring tree stem greenhouse gas fluxes and isotopes may provide robust integrated emission estimates, but due to their coarse resolution, the capacity to derive insights into fine-scale dynamics of tree stem emissions is limited. We demonstrate and field test an alternative method that is Small, Nimble, In situ and allows for Fine-scale Flux (‘SNIFF’) measurements, on complex and contrasting stem surfaces. It is lightweight and therefore suitable to remote field locations enabling real-time data observations allowing for field-based, data driven sampling regimes. This method facilitated novel results capturing fine-scale vertical and radial methane flux measurements (5 cm increments) and revealed: (1) 86–89% of methane emissions emanated from the lower 30 cm of sampled wetland tree species; (2) clear vertical and horizontal trends in δ¹³C-CH₄ possibly due to fractionation associated with oxidation and/or mass-dependant fractionation during diffusive transport; and (3) the occurrence of substantial radial heterogeneity. We also compared a variety of up-scaling approaches to estimate methane flux per tree, including novel smartphone 3D photogrammetry that resulted in substantially higher stem surface area estimations (> 16 to 36%) than traditional empirical methods. Utilising small chambers with high radial and vertical resolution capabilities may therefore facilitate more robust future assessments into the drivers, pathways, oxidation sinks and magnitude of tree stem greenhouse gas emissions, and compliment previous broad-scale sampling techniques.
doi_str_mv 10.1007/s10021-020-00496-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2473380535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713729526</galeid><jstor_id>48731786</jstor_id><sourcerecordid>A713729526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-9644e0e6578337751fc9fa31d345fd19462fbebefa4aa22a8c5f23f6bf6a88ae3</originalsourceid><addsrcrecordid>eNp9kc1q3DAUhU1pIWnaFwgUBN20Czn6syQvhxBPB5K04HQtNPZVosG2ppINydtXE5d2VwTS4XK_eySdorikpKSEqKuUd0YxYQQTImqJ5ZvinApeYSJZ_fZVM1xrQc6K9ykdCKGVFuK8eN6gdrTDgO79uB8A7SbU-nlBjZ8At53NpWZYntEdzE-hRy7ELG1aop8e0UMEQO0MI9pmNT2FJQHa2oRuRp-SD1NCdurRjxg6SAkS-tKW9-WubMrm64finbNDgo9_zoviZ3PzcP0N337f7q43t7jjmsy4lkIAAVkpzblSFXVd7SynPReV62ktJHN72IOzwlrGrO4qx7iTeyet1hb4RfF5nXuM4dcCaTaHsMQpWxomFM8mFa9yV7l2PeYXGz-5MEfb5dXD6LswgfO5vlGUK1ZXTGaArUAXQ0oRnDlGP9r4Yigxp0jMGonJkZjXSMwJ4iuUjqf_g_jvLv-lPq3UIc0h_vURWnGqtOS_AXs7lgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473380535</pqid></control><display><type>article</type><title>A Small Nimble In Situ Fine-Scale Flux Method for Measuring Tree Stem Greenhouse Gas Emissions and Processes (S.N.I.F.F)</title><source>Jstor Complete Legacy</source><source>SpringerLink Journals</source><creator>Jeffrey, Luke C. ; Maher, Damien T. ; Tait, Douglas R. ; Johnston, Scott G.</creator><creatorcontrib>Jeffrey, Luke C. ; Maher, Damien T. ; Tait, Douglas R. ; Johnston, Scott G.</creatorcontrib><description>Tree stem methane emissions are gaining increasing attention as an overlooked atmospheric source pathway. Existing methods for measuring tree stem greenhouse gas fluxes and isotopes may provide robust integrated emission estimates, but due to their coarse resolution, the capacity to derive insights into fine-scale dynamics of tree stem emissions is limited. We demonstrate and field test an alternative method that is Small, Nimble, In situ and allows for Fine-scale Flux (‘SNIFF’) measurements, on complex and contrasting stem surfaces. It is lightweight and therefore suitable to remote field locations enabling real-time data observations allowing for field-based, data driven sampling regimes. This method facilitated novel results capturing fine-scale vertical and radial methane flux measurements (5 cm increments) and revealed: (1) 86–89% of methane emissions emanated from the lower 30 cm of sampled wetland tree species; (2) clear vertical and horizontal trends in δ¹³C-CH₄ possibly due to fractionation associated with oxidation and/or mass-dependant fractionation during diffusive transport; and (3) the occurrence of substantial radial heterogeneity. We also compared a variety of up-scaling approaches to estimate methane flux per tree, including novel smartphone 3D photogrammetry that resulted in substantially higher stem surface area estimations (&gt; 16 to 36%) than traditional empirical methods. Utilising small chambers with high radial and vertical resolution capabilities may therefore facilitate more robust future assessments into the drivers, pathways, oxidation sinks and magnitude of tree stem greenhouse gas emissions, and compliment previous broad-scale sampling techniques.</description><identifier>ISSN: 1432-9840</identifier><identifier>EISSN: 1435-0629</identifier><identifier>DOI: 10.1007/s10021-020-00496-6</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Air pollution ; Biomedical and Life Sciences ; Ecology ; Emission measurements ; Emissions ; Environmental Management ; Field tests ; Fluctuations ; Fluxes ; Fractionation ; Geoecology/Natural Processes ; Greenhouse effect ; Greenhouse gases ; Heterogeneity ; Hydrology/Water Resources ; Isotopes ; Life Sciences ; Measurement ; Measurement methods ; Methane ; Methods ; Original Articles ; Oxidation ; Photogrammetry ; Plant Sciences ; Plant species ; Robustness ; Sampling ; Sampling methods ; Stems ; Trees ; Zoology</subject><ispartof>Ecosystems (New York), 2020-12, Vol.23 (8), p.1676-1689</ispartof><rights>2020 Springer Science+Business Media, LLC, part of Springer Nature</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-9644e0e6578337751fc9fa31d345fd19462fbebefa4aa22a8c5f23f6bf6a88ae3</citedby><cites>FETCH-LOGICAL-c380t-9644e0e6578337751fc9fa31d345fd19462fbebefa4aa22a8c5f23f6bf6a88ae3</cites><orcidid>0000-0002-5826-5613 ; 0000-0001-7690-7651 ; 0000-0001-6536-6757 ; 0000-0003-1899-005X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48731786$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48731786$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids></links><search><creatorcontrib>Jeffrey, Luke C.</creatorcontrib><creatorcontrib>Maher, Damien T.</creatorcontrib><creatorcontrib>Tait, Douglas R.</creatorcontrib><creatorcontrib>Johnston, Scott G.</creatorcontrib><title>A Small Nimble In Situ Fine-Scale Flux Method for Measuring Tree Stem Greenhouse Gas Emissions and Processes (S.N.I.F.F)</title><title>Ecosystems (New York)</title><addtitle>Ecosystems</addtitle><description>Tree stem methane emissions are gaining increasing attention as an overlooked atmospheric source pathway. Existing methods for measuring tree stem greenhouse gas fluxes and isotopes may provide robust integrated emission estimates, but due to their coarse resolution, the capacity to derive insights into fine-scale dynamics of tree stem emissions is limited. We demonstrate and field test an alternative method that is Small, Nimble, In situ and allows for Fine-scale Flux (‘SNIFF’) measurements, on complex and contrasting stem surfaces. It is lightweight and therefore suitable to remote field locations enabling real-time data observations allowing for field-based, data driven sampling regimes. This method facilitated novel results capturing fine-scale vertical and radial methane flux measurements (5 cm increments) and revealed: (1) 86–89% of methane emissions emanated from the lower 30 cm of sampled wetland tree species; (2) clear vertical and horizontal trends in δ¹³C-CH₄ possibly due to fractionation associated with oxidation and/or mass-dependant fractionation during diffusive transport; and (3) the occurrence of substantial radial heterogeneity. We also compared a variety of up-scaling approaches to estimate methane flux per tree, including novel smartphone 3D photogrammetry that resulted in substantially higher stem surface area estimations (&gt; 16 to 36%) than traditional empirical methods. Utilising small chambers with high radial and vertical resolution capabilities may therefore facilitate more robust future assessments into the drivers, pathways, oxidation sinks and magnitude of tree stem greenhouse gas emissions, and compliment previous broad-scale sampling techniques.</description><subject>Air pollution</subject><subject>Biomedical and Life Sciences</subject><subject>Ecology</subject><subject>Emission measurements</subject><subject>Emissions</subject><subject>Environmental Management</subject><subject>Field tests</subject><subject>Fluctuations</subject><subject>Fluxes</subject><subject>Fractionation</subject><subject>Geoecology/Natural Processes</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Heterogeneity</subject><subject>Hydrology/Water Resources</subject><subject>Isotopes</subject><subject>Life Sciences</subject><subject>Measurement</subject><subject>Measurement methods</subject><subject>Methane</subject><subject>Methods</subject><subject>Original Articles</subject><subject>Oxidation</subject><subject>Photogrammetry</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Robustness</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Stems</subject><subject>Trees</subject><subject>Zoology</subject><issn>1432-9840</issn><issn>1435-0629</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc1q3DAUhU1pIWnaFwgUBN20Czn6syQvhxBPB5K04HQtNPZVosG2ppINydtXE5d2VwTS4XK_eySdorikpKSEqKuUd0YxYQQTImqJ5ZvinApeYSJZ_fZVM1xrQc6K9ykdCKGVFuK8eN6gdrTDgO79uB8A7SbU-nlBjZ8At53NpWZYntEdzE-hRy7ELG1aop8e0UMEQO0MI9pmNT2FJQHa2oRuRp-SD1NCdurRjxg6SAkS-tKW9-WubMrm64finbNDgo9_zoviZ3PzcP0N337f7q43t7jjmsy4lkIAAVkpzblSFXVd7SynPReV62ktJHN72IOzwlrGrO4qx7iTeyet1hb4RfF5nXuM4dcCaTaHsMQpWxomFM8mFa9yV7l2PeYXGz-5MEfb5dXD6LswgfO5vlGUK1ZXTGaArUAXQ0oRnDlGP9r4Yigxp0jMGonJkZjXSMwJ4iuUjqf_g_jvLv-lPq3UIc0h_vURWnGqtOS_AXs7lgE</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Jeffrey, Luke C.</creator><creator>Maher, Damien T.</creator><creator>Tait, Douglas R.</creator><creator>Johnston, Scott G.</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5826-5613</orcidid><orcidid>https://orcid.org/0000-0001-7690-7651</orcidid><orcidid>https://orcid.org/0000-0001-6536-6757</orcidid><orcidid>https://orcid.org/0000-0003-1899-005X</orcidid></search><sort><creationdate>20201201</creationdate><title>A Small Nimble In Situ Fine-Scale Flux Method for Measuring Tree Stem Greenhouse Gas Emissions and Processes (S.N.I.F.F)</title><author>Jeffrey, Luke C. ; Maher, Damien T. ; Tait, Douglas R. ; Johnston, Scott G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-9644e0e6578337751fc9fa31d345fd19462fbebefa4aa22a8c5f23f6bf6a88ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air pollution</topic><topic>Biomedical and Life Sciences</topic><topic>Ecology</topic><topic>Emission measurements</topic><topic>Emissions</topic><topic>Environmental Management</topic><topic>Field tests</topic><topic>Fluctuations</topic><topic>Fluxes</topic><topic>Fractionation</topic><topic>Geoecology/Natural Processes</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Heterogeneity</topic><topic>Hydrology/Water Resources</topic><topic>Isotopes</topic><topic>Life Sciences</topic><topic>Measurement</topic><topic>Measurement methods</topic><topic>Methane</topic><topic>Methods</topic><topic>Original Articles</topic><topic>Oxidation</topic><topic>Photogrammetry</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Robustness</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Stems</topic><topic>Trees</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeffrey, Luke C.</creatorcontrib><creatorcontrib>Maher, Damien T.</creatorcontrib><creatorcontrib>Tait, Douglas R.</creatorcontrib><creatorcontrib>Johnston, Scott G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Ecosystems (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeffrey, Luke C.</au><au>Maher, Damien T.</au><au>Tait, Douglas R.</au><au>Johnston, Scott G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Small Nimble In Situ Fine-Scale Flux Method for Measuring Tree Stem Greenhouse Gas Emissions and Processes (S.N.I.F.F)</atitle><jtitle>Ecosystems (New York)</jtitle><stitle>Ecosystems</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>23</volume><issue>8</issue><spage>1676</spage><epage>1689</epage><pages>1676-1689</pages><issn>1432-9840</issn><eissn>1435-0629</eissn><abstract>Tree stem methane emissions are gaining increasing attention as an overlooked atmospheric source pathway. Existing methods for measuring tree stem greenhouse gas fluxes and isotopes may provide robust integrated emission estimates, but due to their coarse resolution, the capacity to derive insights into fine-scale dynamics of tree stem emissions is limited. We demonstrate and field test an alternative method that is Small, Nimble, In situ and allows for Fine-scale Flux (‘SNIFF’) measurements, on complex and contrasting stem surfaces. It is lightweight and therefore suitable to remote field locations enabling real-time data observations allowing for field-based, data driven sampling regimes. This method facilitated novel results capturing fine-scale vertical and radial methane flux measurements (5 cm increments) and revealed: (1) 86–89% of methane emissions emanated from the lower 30 cm of sampled wetland tree species; (2) clear vertical and horizontal trends in δ¹³C-CH₄ possibly due to fractionation associated with oxidation and/or mass-dependant fractionation during diffusive transport; and (3) the occurrence of substantial radial heterogeneity. We also compared a variety of up-scaling approaches to estimate methane flux per tree, including novel smartphone 3D photogrammetry that resulted in substantially higher stem surface area estimations (&gt; 16 to 36%) than traditional empirical methods. Utilising small chambers with high radial and vertical resolution capabilities may therefore facilitate more robust future assessments into the drivers, pathways, oxidation sinks and magnitude of tree stem greenhouse gas emissions, and compliment previous broad-scale sampling techniques.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s10021-020-00496-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5826-5613</orcidid><orcidid>https://orcid.org/0000-0001-7690-7651</orcidid><orcidid>https://orcid.org/0000-0001-6536-6757</orcidid><orcidid>https://orcid.org/0000-0003-1899-005X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-9840
ispartof Ecosystems (New York), 2020-12, Vol.23 (8), p.1676-1689
issn 1432-9840
1435-0629
language eng
recordid cdi_proquest_journals_2473380535
source Jstor Complete Legacy; SpringerLink Journals
subjects Air pollution
Biomedical and Life Sciences
Ecology
Emission measurements
Emissions
Environmental Management
Field tests
Fluctuations
Fluxes
Fractionation
Geoecology/Natural Processes
Greenhouse effect
Greenhouse gases
Heterogeneity
Hydrology/Water Resources
Isotopes
Life Sciences
Measurement
Measurement methods
Methane
Methods
Original Articles
Oxidation
Photogrammetry
Plant Sciences
Plant species
Robustness
Sampling
Sampling methods
Stems
Trees
Zoology
title A Small Nimble In Situ Fine-Scale Flux Method for Measuring Tree Stem Greenhouse Gas Emissions and Processes (S.N.I.F.F)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Small%20Nimble%20In%20Situ%20Fine-Scale%20Flux%20Method%20for%20Measuring%20Tree%20Stem%20Greenhouse%20Gas%20Emissions%20and%20Processes%20(S.N.I.F.F)&rft.jtitle=Ecosystems%20(New%20York)&rft.au=Jeffrey,%20Luke%20C.&rft.date=2020-12-01&rft.volume=23&rft.issue=8&rft.spage=1676&rft.epage=1689&rft.pages=1676-1689&rft.issn=1432-9840&rft.eissn=1435-0629&rft_id=info:doi/10.1007/s10021-020-00496-6&rft_dat=%3Cgale_proqu%3EA713729526%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473380535&rft_id=info:pmid/&rft_galeid=A713729526&rft_jstor_id=48731786&rfr_iscdi=true