Lipschitz constrained GANs via boundedness and continuity

One of the challenges in the study of generative adversarial networks (GANs) is the difficulty of its performance control. Lipschitz constraint is essential in guaranteeing training stability for GANs. Although heuristic methods such as weight clipping, gradient penalty and spectral normalization ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2020-12, Vol.32 (24), p.18271-18283
Hauptverfasser: Liu, Kanglin, Qiu, Guoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18283
container_issue 24
container_start_page 18271
container_title Neural computing & applications
container_volume 32
creator Liu, Kanglin
Qiu, Guoping
description One of the challenges in the study of generative adversarial networks (GANs) is the difficulty of its performance control. Lipschitz constraint is essential in guaranteeing training stability for GANs. Although heuristic methods such as weight clipping, gradient penalty and spectral normalization have been proposed to enforce Lipschitz constraint, it is still difficult to achieve a solution that is both practically effective and theoretically provably satisfying a Lipschitz constraint. In this paper, we introduce the boundedness and continuity (BC) conditions to enforce the Lipschitz constraint on the discriminator functions of GANs. We prove theoretically that GANs with discriminators meeting the BC conditions satisfy the Lipschitz constraint. We present a practically very effective implementation of a GAN based on a convolutional neural network (CNN) by forcing the CNN to satisfy the BC conditions (BC–GAN). We show that as compared to recent techniques including gradient penalty and spectral normalization, BC–GANs have not only better performances but also lower computational complexity.
doi_str_mv 10.1007/s00521-020-04954-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473371467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473371467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2158cce7d00a61f69015fbe40a795eb3a80f1db555259cd50e963360ccdbbbf53</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoWEf_gKuC6-hN82izHAYdhaIbXYe8qhk0HZNWmPn1dqzgztVdnO-cCx9ClwSuCUB9kwF4RTBUgIFJzvD-CBWEUYop8OYYFSDZFAtGT9FZzhsAYKLhBZJt2Gb7FoZ9afuYh6RD9K5cLx9z-RV0afoxOu-iz7nU0R2gIcQxDLtzdNLp9-wvfu8CvdzdPq_ucfu0flgtW2ypoAOuCG-s9bUD0IJ0QgLhnfEMdC25N1Q30BFnOOcVl9Zx8FJQKsBaZ4zpOF2gq3l3m_rP0edBbfoxxemlqlhNaU2YqCeqmimb-pyT79Q2hQ-ddoqAOihSsyI1KVI_itR-KtG5lCc4vvr0N_1P6xsPsmmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473371467</pqid></control><display><type>article</type><title>Lipschitz constrained GANs via boundedness and continuity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Kanglin ; Qiu, Guoping</creator><creatorcontrib>Liu, Kanglin ; Qiu, Guoping</creatorcontrib><description>One of the challenges in the study of generative adversarial networks (GANs) is the difficulty of its performance control. Lipschitz constraint is essential in guaranteeing training stability for GANs. Although heuristic methods such as weight clipping, gradient penalty and spectral normalization have been proposed to enforce Lipschitz constraint, it is still difficult to achieve a solution that is both practically effective and theoretically provably satisfying a Lipschitz constraint. In this paper, we introduce the boundedness and continuity (BC) conditions to enforce the Lipschitz constraint on the discriminator functions of GANs. We prove theoretically that GANs with discriminators meeting the BC conditions satisfy the Lipschitz constraint. We present a practically very effective implementation of a GAN based on a convolutional neural network (CNN) by forcing the CNN to satisfy the BC conditions (BC–GAN). We show that as compared to recent techniques including gradient penalty and spectral normalization, BC–GANs have not only better performances but also lower computational complexity.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-020-04954-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Constraints ; Control stability ; Data Mining and Knowledge Discovery ; Discriminators ; Heuristic methods ; Image Processing and Computer Vision ; Original Article ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing &amp; applications, 2020-12, Vol.32 (24), p.18271-18283</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2158cce7d00a61f69015fbe40a795eb3a80f1db555259cd50e963360ccdbbbf53</citedby><cites>FETCH-LOGICAL-c363t-2158cce7d00a61f69015fbe40a795eb3a80f1db555259cd50e963360ccdbbbf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-020-04954-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-020-04954-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Liu, Kanglin</creatorcontrib><creatorcontrib>Qiu, Guoping</creatorcontrib><title>Lipschitz constrained GANs via boundedness and continuity</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>One of the challenges in the study of generative adversarial networks (GANs) is the difficulty of its performance control. Lipschitz constraint is essential in guaranteeing training stability for GANs. Although heuristic methods such as weight clipping, gradient penalty and spectral normalization have been proposed to enforce Lipschitz constraint, it is still difficult to achieve a solution that is both practically effective and theoretically provably satisfying a Lipschitz constraint. In this paper, we introduce the boundedness and continuity (BC) conditions to enforce the Lipschitz constraint on the discriminator functions of GANs. We prove theoretically that GANs with discriminators meeting the BC conditions satisfy the Lipschitz constraint. We present a practically very effective implementation of a GAN based on a convolutional neural network (CNN) by forcing the CNN to satisfy the BC conditions (BC–GAN). We show that as compared to recent techniques including gradient penalty and spectral normalization, BC–GANs have not only better performances but also lower computational complexity.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Constraints</subject><subject>Control stability</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Discriminators</subject><subject>Heuristic methods</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLxDAUhYMoWEf_gKuC6-hN82izHAYdhaIbXYe8qhk0HZNWmPn1dqzgztVdnO-cCx9ClwSuCUB9kwF4RTBUgIFJzvD-CBWEUYop8OYYFSDZFAtGT9FZzhsAYKLhBZJt2Gb7FoZ9afuYh6RD9K5cLx9z-RV0afoxOu-iz7nU0R2gIcQxDLtzdNLp9-wvfu8CvdzdPq_ucfu0flgtW2ypoAOuCG-s9bUD0IJ0QgLhnfEMdC25N1Q30BFnOOcVl9Zx8FJQKsBaZ4zpOF2gq3l3m_rP0edBbfoxxemlqlhNaU2YqCeqmimb-pyT79Q2hQ-ddoqAOihSsyI1KVI_itR-KtG5lCc4vvr0N_1P6xsPsmmc</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Liu, Kanglin</creator><creator>Qiu, Guoping</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20201201</creationdate><title>Lipschitz constrained GANs via boundedness and continuity</title><author>Liu, Kanglin ; Qiu, Guoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2158cce7d00a61f69015fbe40a795eb3a80f1db555259cd50e963360ccdbbbf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Constraints</topic><topic>Control stability</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Discriminators</topic><topic>Heuristic methods</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kanglin</creatorcontrib><creatorcontrib>Qiu, Guoping</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kanglin</au><au>Qiu, Guoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipschitz constrained GANs via boundedness and continuity</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>32</volume><issue>24</issue><spage>18271</spage><epage>18283</epage><pages>18271-18283</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>One of the challenges in the study of generative adversarial networks (GANs) is the difficulty of its performance control. Lipschitz constraint is essential in guaranteeing training stability for GANs. Although heuristic methods such as weight clipping, gradient penalty and spectral normalization have been proposed to enforce Lipschitz constraint, it is still difficult to achieve a solution that is both practically effective and theoretically provably satisfying a Lipschitz constraint. In this paper, we introduce the boundedness and continuity (BC) conditions to enforce the Lipschitz constraint on the discriminator functions of GANs. We prove theoretically that GANs with discriminators meeting the BC conditions satisfy the Lipschitz constraint. We present a practically very effective implementation of a GAN based on a convolutional neural network (CNN) by forcing the CNN to satisfy the BC conditions (BC–GAN). We show that as compared to recent techniques including gradient penalty and spectral normalization, BC–GANs have not only better performances but also lower computational complexity.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-020-04954-z</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2020-12, Vol.32 (24), p.18271-18283
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2473371467
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Constraints
Control stability
Data Mining and Knowledge Discovery
Discriminators
Heuristic methods
Image Processing and Computer Vision
Original Article
Probability and Statistics in Computer Science
title Lipschitz constrained GANs via boundedness and continuity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipschitz%20constrained%20GANs%20via%20boundedness%20and%20continuity&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Liu,%20Kanglin&rft.date=2020-12-01&rft.volume=32&rft.issue=24&rft.spage=18271&rft.epage=18283&rft.pages=18271-18283&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-020-04954-z&rft_dat=%3Cproquest_cross%3E2473371467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473371467&rft_id=info:pmid/&rfr_iscdi=true