Lipschitz constrained GANs via boundedness and continuity
One of the challenges in the study of generative adversarial networks (GANs) is the difficulty of its performance control. Lipschitz constraint is essential in guaranteeing training stability for GANs. Although heuristic methods such as weight clipping, gradient penalty and spectral normalization ha...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2020-12, Vol.32 (24), p.18271-18283 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18283 |
---|---|
container_issue | 24 |
container_start_page | 18271 |
container_title | Neural computing & applications |
container_volume | 32 |
creator | Liu, Kanglin Qiu, Guoping |
description | One of the challenges in the study of generative adversarial networks (GANs) is the difficulty of its performance control. Lipschitz constraint is essential in guaranteeing training stability for GANs. Although heuristic methods such as weight clipping, gradient penalty and spectral normalization have been proposed to enforce Lipschitz constraint, it is still difficult to achieve a solution that is both practically effective and theoretically provably satisfying a Lipschitz constraint. In this paper, we introduce the boundedness and continuity (BC) conditions to enforce the Lipschitz constraint on the discriminator functions of GANs. We prove theoretically that GANs with discriminators meeting the BC conditions satisfy the Lipschitz constraint. We present a practically very effective implementation of a GAN based on a convolutional neural network (CNN) by forcing the CNN to satisfy the BC conditions (BC–GAN). We show that as compared to recent techniques including gradient penalty and spectral normalization, BC–GANs have not only better performances but also lower computational complexity. |
doi_str_mv | 10.1007/s00521-020-04954-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473371467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473371467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2158cce7d00a61f69015fbe40a795eb3a80f1db555259cd50e963360ccdbbbf53</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoWEf_gKuC6-hN82izHAYdhaIbXYe8qhk0HZNWmPn1dqzgztVdnO-cCx9ClwSuCUB9kwF4RTBUgIFJzvD-CBWEUYop8OYYFSDZFAtGT9FZzhsAYKLhBZJt2Gb7FoZ9afuYh6RD9K5cLx9z-RV0afoxOu-iz7nU0R2gIcQxDLtzdNLp9-wvfu8CvdzdPq_ucfu0flgtW2ypoAOuCG-s9bUD0IJ0QgLhnfEMdC25N1Q30BFnOOcVl9Zx8FJQKsBaZ4zpOF2gq3l3m_rP0edBbfoxxemlqlhNaU2YqCeqmimb-pyT79Q2hQ-ddoqAOihSsyI1KVI_itR-KtG5lCc4vvr0N_1P6xsPsmmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473371467</pqid></control><display><type>article</type><title>Lipschitz constrained GANs via boundedness and continuity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Kanglin ; Qiu, Guoping</creator><creatorcontrib>Liu, Kanglin ; Qiu, Guoping</creatorcontrib><description>One of the challenges in the study of generative adversarial networks (GANs) is the difficulty of its performance control. Lipschitz constraint is essential in guaranteeing training stability for GANs. Although heuristic methods such as weight clipping, gradient penalty and spectral normalization have been proposed to enforce Lipschitz constraint, it is still difficult to achieve a solution that is both practically effective and theoretically provably satisfying a Lipschitz constraint. In this paper, we introduce the boundedness and continuity (BC) conditions to enforce the Lipschitz constraint on the discriminator functions of GANs. We prove theoretically that GANs with discriminators meeting the BC conditions satisfy the Lipschitz constraint. We present a practically very effective implementation of a GAN based on a convolutional neural network (CNN) by forcing the CNN to satisfy the BC conditions (BC–GAN). We show that as compared to recent techniques including gradient penalty and spectral normalization, BC–GANs have not only better performances but also lower computational complexity.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-020-04954-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Constraints ; Control stability ; Data Mining and Knowledge Discovery ; Discriminators ; Heuristic methods ; Image Processing and Computer Vision ; Original Article ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing & applications, 2020-12, Vol.32 (24), p.18271-18283</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2158cce7d00a61f69015fbe40a795eb3a80f1db555259cd50e963360ccdbbbf53</citedby><cites>FETCH-LOGICAL-c363t-2158cce7d00a61f69015fbe40a795eb3a80f1db555259cd50e963360ccdbbbf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-020-04954-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-020-04954-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Liu, Kanglin</creatorcontrib><creatorcontrib>Qiu, Guoping</creatorcontrib><title>Lipschitz constrained GANs via boundedness and continuity</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>One of the challenges in the study of generative adversarial networks (GANs) is the difficulty of its performance control. Lipschitz constraint is essential in guaranteeing training stability for GANs. Although heuristic methods such as weight clipping, gradient penalty and spectral normalization have been proposed to enforce Lipschitz constraint, it is still difficult to achieve a solution that is both practically effective and theoretically provably satisfying a Lipschitz constraint. In this paper, we introduce the boundedness and continuity (BC) conditions to enforce the Lipschitz constraint on the discriminator functions of GANs. We prove theoretically that GANs with discriminators meeting the BC conditions satisfy the Lipschitz constraint. We present a practically very effective implementation of a GAN based on a convolutional neural network (CNN) by forcing the CNN to satisfy the BC conditions (BC–GAN). We show that as compared to recent techniques including gradient penalty and spectral normalization, BC–GANs have not only better performances but also lower computational complexity.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Constraints</subject><subject>Control stability</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Discriminators</subject><subject>Heuristic methods</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLxDAUhYMoWEf_gKuC6-hN82izHAYdhaIbXYe8qhk0HZNWmPn1dqzgztVdnO-cCx9ClwSuCUB9kwF4RTBUgIFJzvD-CBWEUYop8OYYFSDZFAtGT9FZzhsAYKLhBZJt2Gb7FoZ9afuYh6RD9K5cLx9z-RV0afoxOu-iz7nU0R2gIcQxDLtzdNLp9-wvfu8CvdzdPq_ucfu0flgtW2ypoAOuCG-s9bUD0IJ0QgLhnfEMdC25N1Q30BFnOOcVl9Zx8FJQKsBaZ4zpOF2gq3l3m_rP0edBbfoxxemlqlhNaU2YqCeqmimb-pyT79Q2hQ-ddoqAOihSsyI1KVI_itR-KtG5lCc4vvr0N_1P6xsPsmmc</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Liu, Kanglin</creator><creator>Qiu, Guoping</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20201201</creationdate><title>Lipschitz constrained GANs via boundedness and continuity</title><author>Liu, Kanglin ; Qiu, Guoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2158cce7d00a61f69015fbe40a795eb3a80f1db555259cd50e963360ccdbbbf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Constraints</topic><topic>Control stability</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Discriminators</topic><topic>Heuristic methods</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kanglin</creatorcontrib><creatorcontrib>Qiu, Guoping</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kanglin</au><au>Qiu, Guoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipschitz constrained GANs via boundedness and continuity</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>32</volume><issue>24</issue><spage>18271</spage><epage>18283</epage><pages>18271-18283</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>One of the challenges in the study of generative adversarial networks (GANs) is the difficulty of its performance control. Lipschitz constraint is essential in guaranteeing training stability for GANs. Although heuristic methods such as weight clipping, gradient penalty and spectral normalization have been proposed to enforce Lipschitz constraint, it is still difficult to achieve a solution that is both practically effective and theoretically provably satisfying a Lipschitz constraint. In this paper, we introduce the boundedness and continuity (BC) conditions to enforce the Lipschitz constraint on the discriminator functions of GANs. We prove theoretically that GANs with discriminators meeting the BC conditions satisfy the Lipschitz constraint. We present a practically very effective implementation of a GAN based on a convolutional neural network (CNN) by forcing the CNN to satisfy the BC conditions (BC–GAN). We show that as compared to recent techniques including gradient penalty and spectral normalization, BC–GANs have not only better performances but also lower computational complexity.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-020-04954-z</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2020-12, Vol.32 (24), p.18271-18283 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2473371467 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Artificial neural networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Constraints Control stability Data Mining and Knowledge Discovery Discriminators Heuristic methods Image Processing and Computer Vision Original Article Probability and Statistics in Computer Science |
title | Lipschitz constrained GANs via boundedness and continuity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A37%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipschitz%20constrained%20GANs%20via%20boundedness%20and%20continuity&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Liu,%20Kanglin&rft.date=2020-12-01&rft.volume=32&rft.issue=24&rft.spage=18271&rft.epage=18283&rft.pages=18271-18283&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-020-04954-z&rft_dat=%3Cproquest_cross%3E2473371467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473371467&rft_id=info:pmid/&rfr_iscdi=true |