Nature of polar state in 0.67BiFeO3–0.33BaTiO3

This study was conducted to understand the nature of the polar state in the morphotropic phase boundary composition 0.67BiFeO 3 –0.33BaTiO 3 (0.67BF–0.33BT). Both the unpoled and poled specimens exhibit an average cubic structure. The poling induces a 0.14% increase in the lattice parameter. Macrodo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2020-11, Vol.31 (21), p.19266-19276
Hauptverfasser: Wei, Yongxing, Shen, Jiahao, Bai, Chenxing, Jin, Changqing, Zhu, Weitong, Tian, Ye, Dai, Zhonghua, Xu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19276
container_issue 21
container_start_page 19266
container_title Journal of materials science. Materials in electronics
container_volume 31
creator Wei, Yongxing
Shen, Jiahao
Bai, Chenxing
Jin, Changqing
Zhu, Weitong
Tian, Ye
Dai, Zhonghua
Xu, Gang
description This study was conducted to understand the nature of the polar state in the morphotropic phase boundary composition 0.67BiFeO 3 –0.33BaTiO 3 (0.67BF–0.33BT). Both the unpoled and poled specimens exhibit an average cubic structure. The poling induces a 0.14% increase in the lattice parameter. Macrodomains are absent both in the initial and polar state of 0.67BF–0.33BT. A typical relaxor-type dielectric anomaly was observed ( T f  = ~ 627 K, T B  = ~ 820 K). The remnant polarization ( P r ), maximum value of electrostrain ( S m ), and magnitude strain at E c in the bipolar mode ( S neg ) increase clearly during heating ( P r , ~ 40 µC/cm 2 ; S m , 0.191% under 40 kV/cm at 453 K). Unlike Bi 0.5 Na 0.5 TiO 3 -based nonergodic relaxors, the first-cycle bipolar electrostrain loops indicate that the minimum strain on the negative side of the bipolar strain curves is negative. Furthermore, the slopes of the relative permittivity versus log frequency plots in unpoled (− 21) and poled (− 23) specimens are similar. The transition between the relaxor state and ferroelectric-like state does not involve a clear dielectric anomaly even in the poled specimen.
doi_str_mv 10.1007/s10854-020-04462-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473361664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473361664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2789-a564c0038cac19e6227b0d2a1e677192cb4c3e724ad28fb991732f06881718ec3</originalsourceid><addsrcrecordid>eNp9kD1OAzEQhS0EEiFwAaqVqB3GM17_lCQiASkiTZDoLMfxoo1CNtibgo47cENOwsIi0VFN8773NB9jlwJGAkBfZwGmlBwQOEipkNsjNhClJi4NPh2zAdhSc1kinrKznDcAoCSZAYMH3x5SLJqq2Ddbn4rc-jYW9a6AkdLjehoX9Pn-ASOisV_WCzpnJ5Xf5njxe4fscXq7nNzx-WJ2P7mZ84DaWO5LJQMAmeCDsFEh6hWs0YuotBYWw0oGihqlX6OpVtYKTViBMkZoYWKgIbvqe_epeT3E3LpNc0i7btKh1ERKqO6DIcM-FVKTc4qV26f6xac3J8B9m3G9GdeZcT9mnO0g6qHchXfPMf1V_0N9AYHyYmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473361664</pqid></control><display><type>article</type><title>Nature of polar state in 0.67BiFeO3–0.33BaTiO3</title><source>SpringerNature Journals</source><creator>Wei, Yongxing ; Shen, Jiahao ; Bai, Chenxing ; Jin, Changqing ; Zhu, Weitong ; Tian, Ye ; Dai, Zhonghua ; Xu, Gang</creator><creatorcontrib>Wei, Yongxing ; Shen, Jiahao ; Bai, Chenxing ; Jin, Changqing ; Zhu, Weitong ; Tian, Ye ; Dai, Zhonghua ; Xu, Gang</creatorcontrib><description>This study was conducted to understand the nature of the polar state in the morphotropic phase boundary composition 0.67BiFeO 3 –0.33BaTiO 3 (0.67BF–0.33BT). Both the unpoled and poled specimens exhibit an average cubic structure. The poling induces a 0.14% increase in the lattice parameter. Macrodomains are absent both in the initial and polar state of 0.67BF–0.33BT. A typical relaxor-type dielectric anomaly was observed ( T f  = ~ 627 K, T B  = ~ 820 K). The remnant polarization ( P r ), maximum value of electrostrain ( S m ), and magnitude strain at E c in the bipolar mode ( S neg ) increase clearly during heating ( P r , ~ 40 µC/cm 2 ; S m , 0.191% under 40 kV/cm at 453 K). Unlike Bi 0.5 Na 0.5 TiO 3 -based nonergodic relaxors, the first-cycle bipolar electrostrain loops indicate that the minimum strain on the negative side of the bipolar strain curves is negative. Furthermore, the slopes of the relative permittivity versus log frequency plots in unpoled (− 21) and poled (− 23) specimens are similar. The transition between the relaxor state and ferroelectric-like state does not involve a clear dielectric anomaly even in the poled specimen.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-04462-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bismuth titanate ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cubic lattice ; Deoxidizing ; Dielectric properties ; Dielectric relaxation ; Ferroelectricity ; Laboratories ; Materials Science ; Optical and Electronic Materials ; Permittivity ; Polyvinyl alcohol ; Relaxors ; Temperature</subject><ispartof>Journal of materials science. Materials in electronics, 2020-11, Vol.31 (21), p.19266-19276</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2789-a564c0038cac19e6227b0d2a1e677192cb4c3e724ad28fb991732f06881718ec3</citedby><cites>FETCH-LOGICAL-c2789-a564c0038cac19e6227b0d2a1e677192cb4c3e724ad28fb991732f06881718ec3</cites><orcidid>0000-0003-4509-8518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-04462-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-04462-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wei, Yongxing</creatorcontrib><creatorcontrib>Shen, Jiahao</creatorcontrib><creatorcontrib>Bai, Chenxing</creatorcontrib><creatorcontrib>Jin, Changqing</creatorcontrib><creatorcontrib>Zhu, Weitong</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Dai, Zhonghua</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><title>Nature of polar state in 0.67BiFeO3–0.33BaTiO3</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>This study was conducted to understand the nature of the polar state in the morphotropic phase boundary composition 0.67BiFeO 3 –0.33BaTiO 3 (0.67BF–0.33BT). Both the unpoled and poled specimens exhibit an average cubic structure. The poling induces a 0.14% increase in the lattice parameter. Macrodomains are absent both in the initial and polar state of 0.67BF–0.33BT. A typical relaxor-type dielectric anomaly was observed ( T f  = ~ 627 K, T B  = ~ 820 K). The remnant polarization ( P r ), maximum value of electrostrain ( S m ), and magnitude strain at E c in the bipolar mode ( S neg ) increase clearly during heating ( P r , ~ 40 µC/cm 2 ; S m , 0.191% under 40 kV/cm at 453 K). Unlike Bi 0.5 Na 0.5 TiO 3 -based nonergodic relaxors, the first-cycle bipolar electrostrain loops indicate that the minimum strain on the negative side of the bipolar strain curves is negative. Furthermore, the slopes of the relative permittivity versus log frequency plots in unpoled (− 21) and poled (− 23) specimens are similar. The transition between the relaxor state and ferroelectric-like state does not involve a clear dielectric anomaly even in the poled specimen.</description><subject>Bismuth titanate</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cubic lattice</subject><subject>Deoxidizing</subject><subject>Dielectric properties</subject><subject>Dielectric relaxation</subject><subject>Ferroelectricity</subject><subject>Laboratories</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Permittivity</subject><subject>Polyvinyl alcohol</subject><subject>Relaxors</subject><subject>Temperature</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD1OAzEQhS0EEiFwAaqVqB3GM17_lCQiASkiTZDoLMfxoo1CNtibgo47cENOwsIi0VFN8773NB9jlwJGAkBfZwGmlBwQOEipkNsjNhClJi4NPh2zAdhSc1kinrKznDcAoCSZAYMH3x5SLJqq2Ddbn4rc-jYW9a6AkdLjehoX9Pn-ASOisV_WCzpnJ5Xf5njxe4fscXq7nNzx-WJ2P7mZ84DaWO5LJQMAmeCDsFEh6hWs0YuotBYWw0oGihqlX6OpVtYKTViBMkZoYWKgIbvqe_epeT3E3LpNc0i7btKh1ERKqO6DIcM-FVKTc4qV26f6xac3J8B9m3G9GdeZcT9mnO0g6qHchXfPMf1V_0N9AYHyYmY</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Wei, Yongxing</creator><creator>Shen, Jiahao</creator><creator>Bai, Chenxing</creator><creator>Jin, Changqing</creator><creator>Zhu, Weitong</creator><creator>Tian, Ye</creator><creator>Dai, Zhonghua</creator><creator>Xu, Gang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4509-8518</orcidid></search><sort><creationdate>20201101</creationdate><title>Nature of polar state in 0.67BiFeO3–0.33BaTiO3</title><author>Wei, Yongxing ; Shen, Jiahao ; Bai, Chenxing ; Jin, Changqing ; Zhu, Weitong ; Tian, Ye ; Dai, Zhonghua ; Xu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2789-a564c0038cac19e6227b0d2a1e677192cb4c3e724ad28fb991732f06881718ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bismuth titanate</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cubic lattice</topic><topic>Deoxidizing</topic><topic>Dielectric properties</topic><topic>Dielectric relaxation</topic><topic>Ferroelectricity</topic><topic>Laboratories</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Permittivity</topic><topic>Polyvinyl alcohol</topic><topic>Relaxors</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Yongxing</creatorcontrib><creatorcontrib>Shen, Jiahao</creatorcontrib><creatorcontrib>Bai, Chenxing</creatorcontrib><creatorcontrib>Jin, Changqing</creatorcontrib><creatorcontrib>Zhu, Weitong</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Dai, Zhonghua</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Yongxing</au><au>Shen, Jiahao</au><au>Bai, Chenxing</au><au>Jin, Changqing</au><au>Zhu, Weitong</au><au>Tian, Ye</au><au>Dai, Zhonghua</au><au>Xu, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nature of polar state in 0.67BiFeO3–0.33BaTiO3</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>31</volume><issue>21</issue><spage>19266</spage><epage>19276</epage><pages>19266-19276</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>This study was conducted to understand the nature of the polar state in the morphotropic phase boundary composition 0.67BiFeO 3 –0.33BaTiO 3 (0.67BF–0.33BT). Both the unpoled and poled specimens exhibit an average cubic structure. The poling induces a 0.14% increase in the lattice parameter. Macrodomains are absent both in the initial and polar state of 0.67BF–0.33BT. A typical relaxor-type dielectric anomaly was observed ( T f  = ~ 627 K, T B  = ~ 820 K). The remnant polarization ( P r ), maximum value of electrostrain ( S m ), and magnitude strain at E c in the bipolar mode ( S neg ) increase clearly during heating ( P r , ~ 40 µC/cm 2 ; S m , 0.191% under 40 kV/cm at 453 K). Unlike Bi 0.5 Na 0.5 TiO 3 -based nonergodic relaxors, the first-cycle bipolar electrostrain loops indicate that the minimum strain on the negative side of the bipolar strain curves is negative. Furthermore, the slopes of the relative permittivity versus log frequency plots in unpoled (− 21) and poled (− 23) specimens are similar. The transition between the relaxor state and ferroelectric-like state does not involve a clear dielectric anomaly even in the poled specimen.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-04462-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4509-8518</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2020-11, Vol.31 (21), p.19266-19276
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2473361664
source SpringerNature Journals
subjects Bismuth titanate
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cubic lattice
Deoxidizing
Dielectric properties
Dielectric relaxation
Ferroelectricity
Laboratories
Materials Science
Optical and Electronic Materials
Permittivity
Polyvinyl alcohol
Relaxors
Temperature
title Nature of polar state in 0.67BiFeO3–0.33BaTiO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nature%20of%20polar%20state%20in%200.67BiFeO3%E2%80%930.33BaTiO3&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Wei,%20Yongxing&rft.date=2020-11-01&rft.volume=31&rft.issue=21&rft.spage=19266&rft.epage=19276&rft.pages=19266-19276&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-04462-9&rft_dat=%3Cproquest_cross%3E2473361664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473361664&rft_id=info:pmid/&rfr_iscdi=true