Synthesis and comprehensive study of polyvinylidene fluoride–nickel oxide–barium titanate (PVDF–NiO–BaTiO3) hybrid nanocomposite films for enhancement of the electroactive beta phase
This study includes the successful fabrication of polyvinylidene fluoride (PVDF) based hybrid nanocomposite films loaded with nickel oxide (NiO) and barium titanate (BaTiO 3 ) fillers via simple sol–gel casting techniques to optimize the crystallinity and β -phase formation for various sensor applic...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2020-11, Vol.31 (21), p.18464-18476 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18476 |
---|---|
container_issue | 21 |
container_start_page | 18464 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 31 |
creator | Kaur, Gurpreet Rana, Dinesh Singh |
description | This study includes the successful fabrication of polyvinylidene fluoride (PVDF) based hybrid nanocomposite films loaded with nickel oxide (NiO) and barium titanate (BaTiO
3
) fillers via simple sol–gel casting techniques to optimize the crystallinity and
β
-phase formation for various sensor applications. A systematic study has been performed to assess the effect of fillers (NiO and BaTiO
3
) on the crystal structure, morphology and electrical conduction properties of PVDF–NiO–BaTiO
3
hybrid nanocomposite films using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) using energy dispersive spectroscopy and current–voltage (
I
–
V
) measurement techniques. XRD and FTIR results indicate that the incorporation of nanostructured fillers NiO and BaTiO
3
leads to the formation of long stabilized planar zigzag and all-trans conformation (TTTT) inducing the growth of electroactive
β
-phase and crystallinity. XRD results show that the degree of crystallinity reaches a maximum value of 85% for incorporation of 2.5 wt% of NiO and 27.5 wt% of BaTiO
3
. FTIR results show 85% of electroactive
β
-phase growth achieved by incorporating 7.5 wt% of NiO and 22.5 wt% of BaTiO
3
. FESEM micrographs of hybrid films show that both NiO and BaTiO
3
particles are well dispersed within the PVDF pattern with the porous surface resulting in enhanced electrical conductivity. Current–voltage (
I
–
V
) measurement shows the charge transport process in PVDF composites loaded with NiO and BaTiO
3
fillers is mainly governed by Richardson Schottky emission. The significant increase in the electrical conductivity of PVDF–NiO–BaTiO
3
hybrid nanocomposite opens a new window for possible use in miniaturization of electronics and energy harvesting devices. |
doi_str_mv | 10.1007/s10854-020-04390-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473361608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473361608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-ce8e270b05d96b59e60e0695760cad524c09d5b9e98d4e82b0cee6b3e368d5433</originalsourceid><addsrcrecordid>eNp9UU1u1jAQtRBIfBQuwMoSG1ikTOzYSZZQKEWq-JAoiF3kOBPiktip7VRkxx24D4fhJDgEiR2b-dN780bzCHmcw2kOUD4POVSiyIBBBgWvIavukEMuSp4VFft8lxygFmVWCMbukwchXAOALHh1ID8_rDYOGEygynZUu2n2OKAN5hZpiEu3UtfT2Y3rrbHraDq0SPtxcT6Vv77_sEZ_xZG6b3vbKm-WiUYTlVUR6dP3n16dp_k7c0zxpboyR_6MDmub6NQq6zZBF0yC9macAu2dp2gHZTVOaOMmns6jOKKO3ikdt7tajIrOgwr4kNzr1Rjw0d98Qj6ev746u8guj2_enr24zDQXMmYaK2QltCC6WraiRgkIMr1EgladYIWGuhNtjXXVFVixFjSibDlyWXWi4PyEPNn3zt7dLBhic-0Wb5Nkw4qSc5lLqBKK7SjtXQge-2b2ZlJ-bXJoNp-a3acm-dT88anZSHwnhQS2X9D_W_0f1m_JWp6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473361608</pqid></control><display><type>article</type><title>Synthesis and comprehensive study of polyvinylidene fluoride–nickel oxide–barium titanate (PVDF–NiO–BaTiO3) hybrid nanocomposite films for enhancement of the electroactive beta phase</title><source>Springer Nature - Complete Springer Journals</source><creator>Kaur, Gurpreet ; Rana, Dinesh Singh</creator><creatorcontrib>Kaur, Gurpreet ; Rana, Dinesh Singh</creatorcontrib><description>This study includes the successful fabrication of polyvinylidene fluoride (PVDF) based hybrid nanocomposite films loaded with nickel oxide (NiO) and barium titanate (BaTiO
3
) fillers via simple sol–gel casting techniques to optimize the crystallinity and
β
-phase formation for various sensor applications. A systematic study has been performed to assess the effect of fillers (NiO and BaTiO
3
) on the crystal structure, morphology and electrical conduction properties of PVDF–NiO–BaTiO
3
hybrid nanocomposite films using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) using energy dispersive spectroscopy and current–voltage (
I
–
V
) measurement techniques. XRD and FTIR results indicate that the incorporation of nanostructured fillers NiO and BaTiO
3
leads to the formation of long stabilized planar zigzag and all-trans conformation (TTTT) inducing the growth of electroactive
β
-phase and crystallinity. XRD results show that the degree of crystallinity reaches a maximum value of 85% for incorporation of 2.5 wt% of NiO and 27.5 wt% of BaTiO
3
. FTIR results show 85% of electroactive
β
-phase growth achieved by incorporating 7.5 wt% of NiO and 22.5 wt% of BaTiO
3
. FESEM micrographs of hybrid films show that both NiO and BaTiO
3
particles are well dispersed within the PVDF pattern with the porous surface resulting in enhanced electrical conductivity. Current–voltage (
I
–
V
) measurement shows the charge transport process in PVDF composites loaded with NiO and BaTiO
3
fillers is mainly governed by Richardson Schottky emission. The significant increase in the electrical conductivity of PVDF–NiO–BaTiO
3
hybrid nanocomposite opens a new window for possible use in miniaturization of electronics and energy harvesting devices.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-04390-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Barium titanates ; Beta phase ; Characterization and Evaluation of Materials ; Charge transport ; Chemistry and Materials Science ; Crystal structure ; Crystallinity ; Degree of crystallinity ; Electric potential ; Electrical conduction ; Electrical resistivity ; Energy harvesting ; Field emission microscopy ; Field emission spectroscopy ; Fillers ; Fluorides ; Fourier transforms ; Infrared spectroscopy ; Materials Science ; Measurement techniques ; Miniaturization ; Morphology ; Nanocomposites ; Nickel oxides ; Optical and Electronic Materials ; Photomicrographs ; Polyvinylidene fluorides ; Sol-gel processes ; Spectrum analysis ; Voltage ; X-ray diffraction</subject><ispartof>Journal of materials science. Materials in electronics, 2020-11, Vol.31 (21), p.18464-18476</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-ce8e270b05d96b59e60e0695760cad524c09d5b9e98d4e82b0cee6b3e368d5433</citedby><cites>FETCH-LOGICAL-c356t-ce8e270b05d96b59e60e0695760cad524c09d5b9e98d4e82b0cee6b3e368d5433</cites><orcidid>0000-0003-4034-9162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-04390-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-04390-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kaur, Gurpreet</creatorcontrib><creatorcontrib>Rana, Dinesh Singh</creatorcontrib><title>Synthesis and comprehensive study of polyvinylidene fluoride–nickel oxide–barium titanate (PVDF–NiO–BaTiO3) hybrid nanocomposite films for enhancement of the electroactive beta phase</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>This study includes the successful fabrication of polyvinylidene fluoride (PVDF) based hybrid nanocomposite films loaded with nickel oxide (NiO) and barium titanate (BaTiO
3
) fillers via simple sol–gel casting techniques to optimize the crystallinity and
β
-phase formation for various sensor applications. A systematic study has been performed to assess the effect of fillers (NiO and BaTiO
3
) on the crystal structure, morphology and electrical conduction properties of PVDF–NiO–BaTiO
3
hybrid nanocomposite films using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) using energy dispersive spectroscopy and current–voltage (
I
–
V
) measurement techniques. XRD and FTIR results indicate that the incorporation of nanostructured fillers NiO and BaTiO
3
leads to the formation of long stabilized planar zigzag and all-trans conformation (TTTT) inducing the growth of electroactive
β
-phase and crystallinity. XRD results show that the degree of crystallinity reaches a maximum value of 85% for incorporation of 2.5 wt% of NiO and 27.5 wt% of BaTiO
3
. FTIR results show 85% of electroactive
β
-phase growth achieved by incorporating 7.5 wt% of NiO and 22.5 wt% of BaTiO
3
. FESEM micrographs of hybrid films show that both NiO and BaTiO
3
particles are well dispersed within the PVDF pattern with the porous surface resulting in enhanced electrical conductivity. Current–voltage (
I
–
V
) measurement shows the charge transport process in PVDF composites loaded with NiO and BaTiO
3
fillers is mainly governed by Richardson Schottky emission. The significant increase in the electrical conductivity of PVDF–NiO–BaTiO
3
hybrid nanocomposite opens a new window for possible use in miniaturization of electronics and energy harvesting devices.</description><subject>Barium titanates</subject><subject>Beta phase</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transport</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Degree of crystallinity</subject><subject>Electric potential</subject><subject>Electrical conduction</subject><subject>Electrical resistivity</subject><subject>Energy harvesting</subject><subject>Field emission microscopy</subject><subject>Field emission spectroscopy</subject><subject>Fillers</subject><subject>Fluorides</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Materials Science</subject><subject>Measurement techniques</subject><subject>Miniaturization</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nickel oxides</subject><subject>Optical and Electronic Materials</subject><subject>Photomicrographs</subject><subject>Polyvinylidene fluorides</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Voltage</subject><subject>X-ray diffraction</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UU1u1jAQtRBIfBQuwMoSG1ikTOzYSZZQKEWq-JAoiF3kOBPiktip7VRkxx24D4fhJDgEiR2b-dN780bzCHmcw2kOUD4POVSiyIBBBgWvIavukEMuSp4VFft8lxygFmVWCMbukwchXAOALHh1ID8_rDYOGEygynZUu2n2OKAN5hZpiEu3UtfT2Y3rrbHraDq0SPtxcT6Vv77_sEZ_xZG6b3vbKm-WiUYTlVUR6dP3n16dp_k7c0zxpboyR_6MDmub6NQq6zZBF0yC9macAu2dp2gHZTVOaOMmns6jOKKO3ikdt7tajIrOgwr4kNzr1Rjw0d98Qj6ev746u8guj2_enr24zDQXMmYaK2QltCC6WraiRgkIMr1EgladYIWGuhNtjXXVFVixFjSibDlyWXWi4PyEPNn3zt7dLBhic-0Wb5Nkw4qSc5lLqBKK7SjtXQge-2b2ZlJ-bXJoNp-a3acm-dT88anZSHwnhQS2X9D_W_0f1m_JWp6M</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Kaur, Gurpreet</creator><creator>Rana, Dinesh Singh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4034-9162</orcidid></search><sort><creationdate>20201101</creationdate><title>Synthesis and comprehensive study of polyvinylidene fluoride–nickel oxide–barium titanate (PVDF–NiO–BaTiO3) hybrid nanocomposite films for enhancement of the electroactive beta phase</title><author>Kaur, Gurpreet ; Rana, Dinesh Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-ce8e270b05d96b59e60e0695760cad524c09d5b9e98d4e82b0cee6b3e368d5433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Barium titanates</topic><topic>Beta phase</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transport</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Degree of crystallinity</topic><topic>Electric potential</topic><topic>Electrical conduction</topic><topic>Electrical resistivity</topic><topic>Energy harvesting</topic><topic>Field emission microscopy</topic><topic>Field emission spectroscopy</topic><topic>Fillers</topic><topic>Fluorides</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Materials Science</topic><topic>Measurement techniques</topic><topic>Miniaturization</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nickel oxides</topic><topic>Optical and Electronic Materials</topic><topic>Photomicrographs</topic><topic>Polyvinylidene fluorides</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Voltage</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaur, Gurpreet</creatorcontrib><creatorcontrib>Rana, Dinesh Singh</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaur, Gurpreet</au><au>Rana, Dinesh Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and comprehensive study of polyvinylidene fluoride–nickel oxide–barium titanate (PVDF–NiO–BaTiO3) hybrid nanocomposite films for enhancement of the electroactive beta phase</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>31</volume><issue>21</issue><spage>18464</spage><epage>18476</epage><pages>18464-18476</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>This study includes the successful fabrication of polyvinylidene fluoride (PVDF) based hybrid nanocomposite films loaded with nickel oxide (NiO) and barium titanate (BaTiO
3
) fillers via simple sol–gel casting techniques to optimize the crystallinity and
β
-phase formation for various sensor applications. A systematic study has been performed to assess the effect of fillers (NiO and BaTiO
3
) on the crystal structure, morphology and electrical conduction properties of PVDF–NiO–BaTiO
3
hybrid nanocomposite films using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) using energy dispersive spectroscopy and current–voltage (
I
–
V
) measurement techniques. XRD and FTIR results indicate that the incorporation of nanostructured fillers NiO and BaTiO
3
leads to the formation of long stabilized planar zigzag and all-trans conformation (TTTT) inducing the growth of electroactive
β
-phase and crystallinity. XRD results show that the degree of crystallinity reaches a maximum value of 85% for incorporation of 2.5 wt% of NiO and 27.5 wt% of BaTiO
3
. FTIR results show 85% of electroactive
β
-phase growth achieved by incorporating 7.5 wt% of NiO and 22.5 wt% of BaTiO
3
. FESEM micrographs of hybrid films show that both NiO and BaTiO
3
particles are well dispersed within the PVDF pattern with the porous surface resulting in enhanced electrical conductivity. Current–voltage (
I
–
V
) measurement shows the charge transport process in PVDF composites loaded with NiO and BaTiO
3
fillers is mainly governed by Richardson Schottky emission. The significant increase in the electrical conductivity of PVDF–NiO–BaTiO
3
hybrid nanocomposite opens a new window for possible use in miniaturization of electronics and energy harvesting devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-04390-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4034-9162</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2020-11, Vol.31 (21), p.18464-18476 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2473361608 |
source | Springer Nature - Complete Springer Journals |
subjects | Barium titanates Beta phase Characterization and Evaluation of Materials Charge transport Chemistry and Materials Science Crystal structure Crystallinity Degree of crystallinity Electric potential Electrical conduction Electrical resistivity Energy harvesting Field emission microscopy Field emission spectroscopy Fillers Fluorides Fourier transforms Infrared spectroscopy Materials Science Measurement techniques Miniaturization Morphology Nanocomposites Nickel oxides Optical and Electronic Materials Photomicrographs Polyvinylidene fluorides Sol-gel processes Spectrum analysis Voltage X-ray diffraction |
title | Synthesis and comprehensive study of polyvinylidene fluoride–nickel oxide–barium titanate (PVDF–NiO–BaTiO3) hybrid nanocomposite films for enhancement of the electroactive beta phase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20comprehensive%20study%20of%20polyvinylidene%20fluoride%E2%80%93nickel%20oxide%E2%80%93barium%20titanate%20(PVDF%E2%80%93NiO%E2%80%93BaTiO3)%20hybrid%20nanocomposite%20films%20for%20enhancement%20of%20the%20electroactive%20beta%20phase&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Kaur,%20Gurpreet&rft.date=2020-11-01&rft.volume=31&rft.issue=21&rft.spage=18464&rft.epage=18476&rft.pages=18464-18476&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-04390-8&rft_dat=%3Cproquest_cross%3E2473361608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473361608&rft_id=info:pmid/&rfr_iscdi=true |