Two-dimensional d-π conjugated metal-organic framework based on hexahydroxytrinaphthylene
The development of new two-dimensional (2D) d-π conjugated metal-organic frameworks (MOFs) holds great promise for the construction of a new generation of porous and semiconductive materials. This paper describes the synthesis, structural characterization, and electronic properties of a new d-π conj...
Gespeichert in:
Veröffentlicht in: | Nano research 2021-02, Vol.14 (2), p.369-375 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 375 |
---|---|
container_issue | 2 |
container_start_page | 369 |
container_title | Nano research |
container_volume | 14 |
creator | Meng, Zheng Mirica, Katherine A. |
description | The development of new two-dimensional (2D) d-π conjugated metal-organic frameworks (MOFs) holds great promise for the construction of a new generation of porous and semiconductive materials. This paper describes the synthesis, structural characterization, and electronic properties of a new d-π conjugated 2D MOF based on the use of a new ligand 2,3,8,9,14,15-hexahydroxytrinaphthylene. The reticular self-assembly of this large π-conjugated organic building block with Cu(II) ions in a mixed solvent system of 1,3-dimethyl-2-imidazolidinone (DMI) and H
2
O with the addition of ammonia water or ethylenediamine leads to a highly crystalline MOF Cu
3
(HHTN)
2
, which possesses pore aperture of 2.5 nm. Cu
3
(HHTN)
2
MOF shows moderate electrical conductivity of 9.01 × 10
−8
S·cm
−1
at 385 K and temperature-dependent band gap ranging from 0.75 to 1.65 eV. After chemical oxidation by I
2
, the conductivity of Cu
3
(HHTN)
2
can be increased by 360 times. This access to HHTN based MOF adds an important member to previously reported MOF systems with hexagonal lattice, paving the way towards systematic studies of structure-property relationships of semiconductive MOFs. |
doi_str_mv | 10.1007/s12274-020-2874-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473336591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473336591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-851619509294e5f2efa04bf2d8db18e559b119af0fd3f99b3b2949ccf64dd1a23</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwicTZ4HSeNj6jiT6rEBS5cLCe2m5TELnaqJjfekFfCVUCc2MuOtDMj7YfQJZBrIGRxE4DSBcOEEkyLKIYjNAPOC0ziHP9qoOwUnYWwISSnwIoZenvZO6yaTtvQOCvbROGvz6RydrNby16rpNO9bLHza2mbKjFednrv_HtSyhCvzia1HmQ9Ku-GsfeNldu6r8dWW32OToxsg7742XP0en_3snzEq-eHp-XtClcp5D0uMsiBZ4RTznRmqDaSsNJQVagSCp1lvATg0hCjUsN5mZbRyKvK5EwpkDSdo6upd-vdx06HXmzczsdfgqBskaZpnnGILphclXcheG3E1jed9KMAIg4IxYRQRITigFAMMUOnTIheu9b-r_n_0DeQqXbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473336591</pqid></control><display><type>article</type><title>Two-dimensional d-π conjugated metal-organic framework based on hexahydroxytrinaphthylene</title><source>SpringerLink Journals</source><creator>Meng, Zheng ; Mirica, Katherine A.</creator><creatorcontrib>Meng, Zheng ; Mirica, Katherine A.</creatorcontrib><description>The development of new two-dimensional (2D) d-π conjugated metal-organic frameworks (MOFs) holds great promise for the construction of a new generation of porous and semiconductive materials. This paper describes the synthesis, structural characterization, and electronic properties of a new d-π conjugated 2D MOF based on the use of a new ligand 2,3,8,9,14,15-hexahydroxytrinaphthylene. The reticular self-assembly of this large π-conjugated organic building block with Cu(II) ions in a mixed solvent system of 1,3-dimethyl-2-imidazolidinone (DMI) and H
2
O with the addition of ammonia water or ethylenediamine leads to a highly crystalline MOF Cu
3
(HHTN)
2
, which possesses pore aperture of 2.5 nm. Cu
3
(HHTN)
2
MOF shows moderate electrical conductivity of 9.01 × 10
−8
S·cm
−1
at 385 K and temperature-dependent band gap ranging from 0.75 to 1.65 eV. After chemical oxidation by I
2
, the conductivity of Cu
3
(HHTN)
2
can be increased by 360 times. This access to HHTN based MOF adds an important member to previously reported MOF systems with hexagonal lattice, paving the way towards systematic studies of structure-property relationships of semiconductive MOFs.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-020-2874-x</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Ammonia ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Construction ; Copper ; Diffraction ; Electrical conductivity ; Electrical resistivity ; Electronic properties ; Ethylenediamine ; Hexagonal lattice ; Ligands ; Materials Science ; Metal-organic frameworks ; Nanotechnology ; Oxidation ; Porous materials ; Research Article ; Self-assembly ; Solvents ; Structural analysis ; Temperature dependence</subject><ispartof>Nano research, 2021-02, Vol.14 (2), p.369-375</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-851619509294e5f2efa04bf2d8db18e559b119af0fd3f99b3b2949ccf64dd1a23</citedby><cites>FETCH-LOGICAL-c316t-851619509294e5f2efa04bf2d8db18e559b119af0fd3f99b3b2949ccf64dd1a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-020-2874-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-020-2874-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Meng, Zheng</creatorcontrib><creatorcontrib>Mirica, Katherine A.</creatorcontrib><title>Two-dimensional d-π conjugated metal-organic framework based on hexahydroxytrinaphthylene</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>The development of new two-dimensional (2D) d-π conjugated metal-organic frameworks (MOFs) holds great promise for the construction of a new generation of porous and semiconductive materials. This paper describes the synthesis, structural characterization, and electronic properties of a new d-π conjugated 2D MOF based on the use of a new ligand 2,3,8,9,14,15-hexahydroxytrinaphthylene. The reticular self-assembly of this large π-conjugated organic building block with Cu(II) ions in a mixed solvent system of 1,3-dimethyl-2-imidazolidinone (DMI) and H
2
O with the addition of ammonia water or ethylenediamine leads to a highly crystalline MOF Cu
3
(HHTN)
2
, which possesses pore aperture of 2.5 nm. Cu
3
(HHTN)
2
MOF shows moderate electrical conductivity of 9.01 × 10
−8
S·cm
−1
at 385 K and temperature-dependent band gap ranging from 0.75 to 1.65 eV. After chemical oxidation by I
2
, the conductivity of Cu
3
(HHTN)
2
can be increased by 360 times. This access to HHTN based MOF adds an important member to previously reported MOF systems with hexagonal lattice, paving the way towards systematic studies of structure-property relationships of semiconductive MOFs.</description><subject>Ammonia</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Construction</subject><subject>Copper</subject><subject>Diffraction</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electronic properties</subject><subject>Ethylenediamine</subject><subject>Hexagonal lattice</subject><subject>Ligands</subject><subject>Materials Science</subject><subject>Metal-organic frameworks</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Porous materials</subject><subject>Research Article</subject><subject>Self-assembly</subject><subject>Solvents</subject><subject>Structural analysis</subject><subject>Temperature dependence</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1OwzAQhC0EEqXwANwicTZ4HSeNj6jiT6rEBS5cLCe2m5TELnaqJjfekFfCVUCc2MuOtDMj7YfQJZBrIGRxE4DSBcOEEkyLKIYjNAPOC0ziHP9qoOwUnYWwISSnwIoZenvZO6yaTtvQOCvbROGvz6RydrNby16rpNO9bLHza2mbKjFednrv_HtSyhCvzia1HmQ9Ku-GsfeNldu6r8dWW32OToxsg7742XP0en_3snzEq-eHp-XtClcp5D0uMsiBZ4RTznRmqDaSsNJQVagSCp1lvATg0hCjUsN5mZbRyKvK5EwpkDSdo6upd-vdx06HXmzczsdfgqBskaZpnnGILphclXcheG3E1jed9KMAIg4IxYRQRITigFAMMUOnTIheu9b-r_n_0DeQqXbA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Meng, Zheng</creator><creator>Mirica, Katherine A.</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210201</creationdate><title>Two-dimensional d-π conjugated metal-organic framework based on hexahydroxytrinaphthylene</title><author>Meng, Zheng ; Mirica, Katherine A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-851619509294e5f2efa04bf2d8db18e559b119af0fd3f99b3b2949ccf64dd1a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonia</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Construction</topic><topic>Copper</topic><topic>Diffraction</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electronic properties</topic><topic>Ethylenediamine</topic><topic>Hexagonal lattice</topic><topic>Ligands</topic><topic>Materials Science</topic><topic>Metal-organic frameworks</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Porous materials</topic><topic>Research Article</topic><topic>Self-assembly</topic><topic>Solvents</topic><topic>Structural analysis</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Zheng</creatorcontrib><creatorcontrib>Mirica, Katherine A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Zheng</au><au>Mirica, Katherine A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional d-π conjugated metal-organic framework based on hexahydroxytrinaphthylene</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>14</volume><issue>2</issue><spage>369</spage><epage>375</epage><pages>369-375</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>The development of new two-dimensional (2D) d-π conjugated metal-organic frameworks (MOFs) holds great promise for the construction of a new generation of porous and semiconductive materials. This paper describes the synthesis, structural characterization, and electronic properties of a new d-π conjugated 2D MOF based on the use of a new ligand 2,3,8,9,14,15-hexahydroxytrinaphthylene. The reticular self-assembly of this large π-conjugated organic building block with Cu(II) ions in a mixed solvent system of 1,3-dimethyl-2-imidazolidinone (DMI) and H
2
O with the addition of ammonia water or ethylenediamine leads to a highly crystalline MOF Cu
3
(HHTN)
2
, which possesses pore aperture of 2.5 nm. Cu
3
(HHTN)
2
MOF shows moderate electrical conductivity of 9.01 × 10
−8
S·cm
−1
at 385 K and temperature-dependent band gap ranging from 0.75 to 1.65 eV. After chemical oxidation by I
2
, the conductivity of Cu
3
(HHTN)
2
can be increased by 360 times. This access to HHTN based MOF adds an important member to previously reported MOF systems with hexagonal lattice, paving the way towards systematic studies of structure-property relationships of semiconductive MOFs.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-020-2874-x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2021-02, Vol.14 (2), p.369-375 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2473336591 |
source | SpringerLink Journals |
subjects | Ammonia Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Construction Copper Diffraction Electrical conductivity Electrical resistivity Electronic properties Ethylenediamine Hexagonal lattice Ligands Materials Science Metal-organic frameworks Nanotechnology Oxidation Porous materials Research Article Self-assembly Solvents Structural analysis Temperature dependence |
title | Two-dimensional d-π conjugated metal-organic framework based on hexahydroxytrinaphthylene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20d-%CF%80%20conjugated%20metal-organic%20framework%20based%20on%20hexahydroxytrinaphthylene&rft.jtitle=Nano%20research&rft.au=Meng,%20Zheng&rft.date=2021-02-01&rft.volume=14&rft.issue=2&rft.spage=369&rft.epage=375&rft.pages=369-375&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-020-2874-x&rft_dat=%3Cproquest_cross%3E2473336591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473336591&rft_id=info:pmid/&rfr_iscdi=true |