Topology optimization for transversely isotropic materials with high-cycle fatigue as a constraint

We propose a topology optimization method for design of transversely isotropic elastic continua subject to high-cycle fatigue. The method is applicable to design of additive manufactured components, where transverse isotropy is often manifested in the form of a lower Young’s modulus but a higher fat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2021, Vol.63 (1), p.161-172
Hauptverfasser: Suresh, Shyam, Lindström, Stefan B., Thore, Carl-Johan, Klarbring, Anders
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a topology optimization method for design of transversely isotropic elastic continua subject to high-cycle fatigue. The method is applicable to design of additive manufactured components, where transverse isotropy is often manifested in the form of a lower Young’s modulus but a higher fatigue strength in the build direction. The fatigue constraint is based on a continuous-time model in the form of ordinary differential equations governing the time evolution of fatigue damage at each point in the design domain. Such evolution occurs when the stress state lies outside a so-called endurance surface that moves in stress space depending on the current stress and a back-stress tensor. Pointwise bounds on the fatigue damage are approximated using a smooth aggregation function, and the fatigue sensitivities are determined by the adjoint method. Several problems where the objective is to minimize mass are solved numerically. The problems involve non-periodic proportional and non-proportional load histories. Two alloy steels, AISI-SAE 4340 and 34CrMo6, are treated and the respective as well as the combined impact of transversely isotropic elastic and fatigue properties on the design are compared.
ISSN:1615-147X
1615-1488
1615-1488
DOI:10.1007/s00158-020-02677-2