Real Estate Dictionaries Across Space and Time

Leveraging high-dimensional variable selection methods, we show the textual information provided in real estate agents’ remarks about a property can be used to address spatial and temporal heterogeneity in housing markets. Including the textual information in the pricing model decreases in-sample pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of real estate finance and economics 2021, Vol.62 (1), p.139-163
Hauptverfasser: Nowak, Adam D., Price, Bradley S., Smith, Patrick S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Leveraging high-dimensional variable selection methods, we show the textual information provided in real estate agents’ remarks about a property can be used to address spatial and temporal heterogeneity in housing markets. Including the textual information in the pricing model decreases in-sample prediction errors by as much as 18.7% at the MSA-level and 39.1% at the zip code level. These results are robust to transforming the raw text using a real estate specific word list, the choice of n-grams, word stemming, and heteroscedasticity in the hedonic and repeat-sales models. These findings suggest the raw text in the remarks can be included directly in predictive pricing models.
ISSN:0895-5638
1573-045X
DOI:10.1007/s11146-019-09740-w