Improving charge separation, photocurrent and photocatalytic activities of Dy-doped TiO2 by surface modification with salicylic acid

Salicylic acid-modified Dy-TiO 2 (Dy-TiO 2 /SA), novel visible light-sensitive material was synthesized via a sol–gel followed by impregnation method. Salicylic acid (SA) molecules are mixed with the TiO 2 and Dy-TiO 2 samples in hexane which promotes their direct adsorption. SA-modified TiO 2 parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2020-12, Vol.31 (23), p.20919-20931
Hauptverfasser: Ouled Amor, Chaima, Elghniji, Kais, Elaloui, Elimame
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20931
container_issue 23
container_start_page 20919
container_title Journal of materials science. Materials in electronics
container_volume 31
creator Ouled Amor, Chaima
Elghniji, Kais
Elaloui, Elimame
description Salicylic acid-modified Dy-TiO 2 (Dy-TiO 2 /SA), novel visible light-sensitive material was synthesized via a sol–gel followed by impregnation method. Salicylic acid (SA) molecules are mixed with the TiO 2 and Dy-TiO 2 samples in hexane which promotes their direct adsorption. SA-modified TiO 2 particles (TiO 2 /SA and Dy-TiO 2 /SA) were finally obtained after drying at 120 °C. FTIR spectroscopy shows the formation of a fairly stable complex between Ti 4+ surface ions and salicylic acid. In Dy-TiO 2 /SA complex, a ligand-to-metal charge transfer (LMCT) is active giving light absorption in the visible region (500–600 nm) indicating a bandgap of ~ 2.24 eV, lower than unmodified TiO 2 samples. Electron paramagnetic resonance (EPR) and photoluminescence analyses demonstrate that LMCT process stabilizes the defect states within TiO 2 bandgap, suppressing the electron–hole recombination process. The charge separation of SA-modified TiO 2 complexes was evaluated through the photocurrent and the photocatalytic performances of Dy-TiO 2 /SA under visible light irradiation.
doi_str_mv 10.1007/s10854-020-04606-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473327383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473327383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-d1b5bb9db5bd7a4d67a2f2eae9e4e46b4bddcc73616f70a5ad84f97685d4bb313</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoOKdfwFPAq9E0SZPuKPPfYLDLBG8hTdIto2tqkul694Nb14E3L3kh_H7Py_sAcJ3huwxjcR8zXOQMYYIRZhxztD8BoywXFLGCvJ-CEZ7kArGckHNwEeMGY8wZLUbge7Ztg_90zQrqtQorC6NtVVDJ-eYWtmufvN6FYJsEVWOOHyqpuktOQ6WT-3TJ2Qh9BR87ZHxrDVy6BYFlB-MuVEpbuPXGVU4foPDLpTWMqna6qw8IZy7BWaXqaK-Ocwzenp-W01c0X7zMpg9zpGnOEzJZmZflxPSvEYoZLhSpiFV2YpllvGSlMVoLyjNeCaxyZQpWTQQvcsPKkmZ0DG4Gbn_yx87GJDd-F5p-pSRMUEoELWifIkNKBx9jsJVsg9uq0MkMy1_bcrAte9vyYFvu-xIdSrEPNysb_tD_tH4ADbiHEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473327383</pqid></control><display><type>article</type><title>Improving charge separation, photocurrent and photocatalytic activities of Dy-doped TiO2 by surface modification with salicylic acid</title><source>Springer Nature - Complete Springer Journals</source><creator>Ouled Amor, Chaima ; Elghniji, Kais ; Elaloui, Elimame</creator><creatorcontrib>Ouled Amor, Chaima ; Elghniji, Kais ; Elaloui, Elimame</creatorcontrib><description>Salicylic acid-modified Dy-TiO 2 (Dy-TiO 2 /SA), novel visible light-sensitive material was synthesized via a sol–gel followed by impregnation method. Salicylic acid (SA) molecules are mixed with the TiO 2 and Dy-TiO 2 samples in hexane which promotes their direct adsorption. SA-modified TiO 2 particles (TiO 2 /SA and Dy-TiO 2 /SA) were finally obtained after drying at 120 °C. FTIR spectroscopy shows the formation of a fairly stable complex between Ti 4+ surface ions and salicylic acid. In Dy-TiO 2 /SA complex, a ligand-to-metal charge transfer (LMCT) is active giving light absorption in the visible region (500–600 nm) indicating a bandgap of ~ 2.24 eV, lower than unmodified TiO 2 samples. Electron paramagnetic resonance (EPR) and photoluminescence analyses demonstrate that LMCT process stabilizes the defect states within TiO 2 bandgap, suppressing the electron–hole recombination process. The charge separation of SA-modified TiO 2 complexes was evaluated through the photocurrent and the photocatalytic performances of Dy-TiO 2 /SA under visible light irradiation.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-04606-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acids ; Characterization and Evaluation of Materials ; Charge transfer ; Chemistry and Materials Science ; Coordination compounds ; Dysprosium ; Electromagnetic absorption ; Electron paramagnetic resonance ; Energy gap ; Hexanes ; Light irradiation ; Materials Science ; Optical and Electronic Materials ; Photocatalysis ; Photoelectric effect ; Photoelectric emission ; Photoluminescence ; Salicylic acid ; Separation ; Sol-gel processes ; Titanium dioxide</subject><ispartof>Journal of materials science. Materials in electronics, 2020-12, Vol.31 (23), p.20919-20931</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-d1b5bb9db5bd7a4d67a2f2eae9e4e46b4bddcc73616f70a5ad84f97685d4bb313</citedby><cites>FETCH-LOGICAL-c356t-d1b5bb9db5bd7a4d67a2f2eae9e4e46b4bddcc73616f70a5ad84f97685d4bb313</cites><orcidid>0000-0001-7367-3095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-04606-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-04606-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ouled Amor, Chaima</creatorcontrib><creatorcontrib>Elghniji, Kais</creatorcontrib><creatorcontrib>Elaloui, Elimame</creatorcontrib><title>Improving charge separation, photocurrent and photocatalytic activities of Dy-doped TiO2 by surface modification with salicylic acid</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Salicylic acid-modified Dy-TiO 2 (Dy-TiO 2 /SA), novel visible light-sensitive material was synthesized via a sol–gel followed by impregnation method. Salicylic acid (SA) molecules are mixed with the TiO 2 and Dy-TiO 2 samples in hexane which promotes their direct adsorption. SA-modified TiO 2 particles (TiO 2 /SA and Dy-TiO 2 /SA) were finally obtained after drying at 120 °C. FTIR spectroscopy shows the formation of a fairly stable complex between Ti 4+ surface ions and salicylic acid. In Dy-TiO 2 /SA complex, a ligand-to-metal charge transfer (LMCT) is active giving light absorption in the visible region (500–600 nm) indicating a bandgap of ~ 2.24 eV, lower than unmodified TiO 2 samples. Electron paramagnetic resonance (EPR) and photoluminescence analyses demonstrate that LMCT process stabilizes the defect states within TiO 2 bandgap, suppressing the electron–hole recombination process. The charge separation of SA-modified TiO 2 complexes was evaluated through the photocurrent and the photocatalytic performances of Dy-TiO 2 /SA under visible light irradiation.</description><subject>Acids</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Coordination compounds</subject><subject>Dysprosium</subject><subject>Electromagnetic absorption</subject><subject>Electron paramagnetic resonance</subject><subject>Energy gap</subject><subject>Hexanes</subject><subject>Light irradiation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Photocatalysis</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoluminescence</subject><subject>Salicylic acid</subject><subject>Separation</subject><subject>Sol-gel processes</subject><subject>Titanium dioxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LwzAYh4MoOKdfwFPAq9E0SZPuKPPfYLDLBG8hTdIto2tqkul694Nb14E3L3kh_H7Py_sAcJ3huwxjcR8zXOQMYYIRZhxztD8BoywXFLGCvJ-CEZ7kArGckHNwEeMGY8wZLUbge7Ztg_90zQrqtQorC6NtVVDJ-eYWtmufvN6FYJsEVWOOHyqpuktOQ6WT-3TJ2Qh9BR87ZHxrDVy6BYFlB-MuVEpbuPXGVU4foPDLpTWMqna6qw8IZy7BWaXqaK-Ocwzenp-W01c0X7zMpg9zpGnOEzJZmZflxPSvEYoZLhSpiFV2YpllvGSlMVoLyjNeCaxyZQpWTQQvcsPKkmZ0DG4Gbn_yx87GJDd-F5p-pSRMUEoELWifIkNKBx9jsJVsg9uq0MkMy1_bcrAte9vyYFvu-xIdSrEPNysb_tD_tH4ADbiHEA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Ouled Amor, Chaima</creator><creator>Elghniji, Kais</creator><creator>Elaloui, Elimame</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-7367-3095</orcidid></search><sort><creationdate>20201201</creationdate><title>Improving charge separation, photocurrent and photocatalytic activities of Dy-doped TiO2 by surface modification with salicylic acid</title><author>Ouled Amor, Chaima ; Elghniji, Kais ; Elaloui, Elimame</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-d1b5bb9db5bd7a4d67a2f2eae9e4e46b4bddcc73616f70a5ad84f97685d4bb313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Coordination compounds</topic><topic>Dysprosium</topic><topic>Electromagnetic absorption</topic><topic>Electron paramagnetic resonance</topic><topic>Energy gap</topic><topic>Hexanes</topic><topic>Light irradiation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Photocatalysis</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoluminescence</topic><topic>Salicylic acid</topic><topic>Separation</topic><topic>Sol-gel processes</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouled Amor, Chaima</creatorcontrib><creatorcontrib>Elghniji, Kais</creatorcontrib><creatorcontrib>Elaloui, Elimame</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouled Amor, Chaima</au><au>Elghniji, Kais</au><au>Elaloui, Elimame</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving charge separation, photocurrent and photocatalytic activities of Dy-doped TiO2 by surface modification with salicylic acid</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>31</volume><issue>23</issue><spage>20919</spage><epage>20931</epage><pages>20919-20931</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Salicylic acid-modified Dy-TiO 2 (Dy-TiO 2 /SA), novel visible light-sensitive material was synthesized via a sol–gel followed by impregnation method. Salicylic acid (SA) molecules are mixed with the TiO 2 and Dy-TiO 2 samples in hexane which promotes their direct adsorption. SA-modified TiO 2 particles (TiO 2 /SA and Dy-TiO 2 /SA) were finally obtained after drying at 120 °C. FTIR spectroscopy shows the formation of a fairly stable complex between Ti 4+ surface ions and salicylic acid. In Dy-TiO 2 /SA complex, a ligand-to-metal charge transfer (LMCT) is active giving light absorption in the visible region (500–600 nm) indicating a bandgap of ~ 2.24 eV, lower than unmodified TiO 2 samples. Electron paramagnetic resonance (EPR) and photoluminescence analyses demonstrate that LMCT process stabilizes the defect states within TiO 2 bandgap, suppressing the electron–hole recombination process. The charge separation of SA-modified TiO 2 complexes was evaluated through the photocurrent and the photocatalytic performances of Dy-TiO 2 /SA under visible light irradiation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-04606-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7367-3095</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2020-12, Vol.31 (23), p.20919-20931
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2473327383
source Springer Nature - Complete Springer Journals
subjects Acids
Characterization and Evaluation of Materials
Charge transfer
Chemistry and Materials Science
Coordination compounds
Dysprosium
Electromagnetic absorption
Electron paramagnetic resonance
Energy gap
Hexanes
Light irradiation
Materials Science
Optical and Electronic Materials
Photocatalysis
Photoelectric effect
Photoelectric emission
Photoluminescence
Salicylic acid
Separation
Sol-gel processes
Titanium dioxide
title Improving charge separation, photocurrent and photocatalytic activities of Dy-doped TiO2 by surface modification with salicylic acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20charge%20separation,%20photocurrent%20and%20photocatalytic%20activities%20of%20Dy-doped%20TiO2%20by%20surface%20modification%20with%20salicylic%20acid&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ouled%20Amor,%20Chaima&rft.date=2020-12-01&rft.volume=31&rft.issue=23&rft.spage=20919&rft.epage=20931&rft.pages=20919-20931&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-04606-x&rft_dat=%3Cproquest_cross%3E2473327383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473327383&rft_id=info:pmid/&rfr_iscdi=true