UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function

Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular psychiatry 2020-12, Vol.25 (12), p.3360-3379
Hauptverfasser: Notaras, Michael, Allen, Megan, Longo, Francesco, Volk, Nicole, Toth, Miklos, Li Jeon, Noo, Klann, Eric, Colak, Dilek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3379
container_issue 12
container_start_page 3360
container_title Molecular psychiatry
container_volume 25
creator Notaras, Michael
Allen, Megan
Longo, Francesco
Volk, Nicole
Toth, Miklos
Li Jeon, Noo
Klann, Eric
Colak, Dilek
description Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of specific mRNAs has been implicated in synaptic plasticity, the tightly controlled mechanisms that regulate local quantity of specific mRNAs remain poorly understood. Despite being the only RNA regulatory pathway that is associated with multiple mental illnesses, the nonsense-mediated mRNA decay (NMD) pathway presents an unexplored regulatory mechanism for synaptic function and plasticity. Here, we show that neuron-specific disruption of UPF2, an NMD component, in adulthood attenuates learning, memory, spine density, synaptic plasticity (L-LTP), and potentiates perseverative/repetitive behavior in mice. We report that the NMD pathway operates within dendrites to regulate Glutamate Receptor 1 (GLUR1) surface levels. Specifically, UPF2 modulates the internalization of GLUR1 and promotes its local synthesis in dendrites. We identified neuronal Prkag3 mRNA as a mechanistic substrate for NMD that contributes to the UPF2-mediated regulation of GLUR1 by limiting total GLUR1 levels. These data establish that UPF2 regulates synaptic plasticity, cognition, and local protein synthesis in dendrites, providing fundamental insight into the neuron-specific function of NMD within the brain.
doi_str_mv 10.1038/s41380-019-0547-5
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_proquest_journals_2473290313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649491471</galeid><sourcerecordid>A649491471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-c72599f19143ff3ff52e28506ace84cc5271709f3321142db6ccd318e0f106fb3</originalsourceid><addsrcrecordid>eNp1kltrFTEUhQdRbK3-AF8k4IsvU3PPzItwKK0KRUXsc8jJ7IwpM8kxyRTOvzfjqbUVJYFc9rdW2GE1zUuCTwlm3dvMCetwi0nfYsFVKx41x4Qr2Qqhusd1z0TfctLxo-ZZztcYr0XxtDliRDLJOnLc7K6-XFA0gRkyKhENMCYzmOJjQNHVYxiSL96aadqjYtIIBQY0f_20-YUnGJfJFEB5H8yucmg3mVxXX_bIhAHZOIaqvwHklmBX2-fNE2emDC9u15Pm6uL829mH9vLz-49nm8vWCqZKaxUVfe9ITzhzrk5BgXYCS2Oh49YKqojCvWOMEsLpsJXWDox0gB3B0m3ZSfPu4LtbtjMMFkJJZtK75GeT9joarx9Wgv-ux3ijlZBSUFoN3twapPhjgVz07LOFaTIB4pI1ZVgpJjFnFX39F3odlxRqe5pyxWiPGblHjWYC7YOL9V27muqN5D2vrSpSqdN_UHUMMHsbAzhf7x8IyEFgU8w5gbvrkWC9xkQfYqJrTPQaEy2q5tX9z7lT_M5FBegByLUURkh_Ovq_60_M3Mfs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473290313</pqid></control><display><type>article</type><title>UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Notaras, Michael ; Allen, Megan ; Longo, Francesco ; Volk, Nicole ; Toth, Miklos ; Li Jeon, Noo ; Klann, Eric ; Colak, Dilek</creator><creatorcontrib>Notaras, Michael ; Allen, Megan ; Longo, Francesco ; Volk, Nicole ; Toth, Miklos ; Li Jeon, Noo ; Klann, Eric ; Colak, Dilek</creatorcontrib><description>Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of specific mRNAs has been implicated in synaptic plasticity, the tightly controlled mechanisms that regulate local quantity of specific mRNAs remain poorly understood. Despite being the only RNA regulatory pathway that is associated with multiple mental illnesses, the nonsense-mediated mRNA decay (NMD) pathway presents an unexplored regulatory mechanism for synaptic function and plasticity. Here, we show that neuron-specific disruption of UPF2, an NMD component, in adulthood attenuates learning, memory, spine density, synaptic plasticity (L-LTP), and potentiates perseverative/repetitive behavior in mice. We report that the NMD pathway operates within dendrites to regulate Glutamate Receptor 1 (GLUR1) surface levels. Specifically, UPF2 modulates the internalization of GLUR1 and promotes its local synthesis in dendrites. We identified neuronal Prkag3 mRNA as a mechanistic substrate for NMD that contributes to the UPF2-mediated regulation of GLUR1 by limiting total GLUR1 levels. These data establish that UPF2 regulates synaptic plasticity, cognition, and local protein synthesis in dendrites, providing fundamental insight into the neuron-specific function of NMD within the brain.</description><identifier>ISSN: 1359-4184</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/s41380-019-0547-5</identifier><identifier>PMID: 31636381</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/62 ; 38 ; 631/378 ; 631/80 ; 692/699/476/1799 ; 82 ; Animals ; Behavioral Sciences ; Biological Psychology ; Cognition ; Cognitive ability ; Dendrites ; Development and progression ; Gene Expression Regulation ; Genetic aspects ; Glutamic acid receptors ; Glutamic acid receptors (ionotropic) ; Health aspects ; Internalization ; Long-term potentiation ; Medicine ; Medicine &amp; Public Health ; Mental disorders ; Mental illness ; Messenger RNA ; Mice ; mRNA turnover ; Neurodevelopmental disorders ; Neurological research ; Neuronal Plasticity - genetics ; Neuroplasticity ; Neurosciences ; Nonsense Mediated mRNA Decay ; Pharmacotherapy ; Physiological aspects ; Protein biosynthesis ; Proteolysis ; Psychiatry ; Psychological aspects ; Regulation ; RNA, Messenger - metabolism ; RNA-Binding Proteins - genetics ; Synaptic density ; Synaptic plasticity ; Translation</subject><ispartof>Molecular psychiatry, 2020-12, Vol.25 (12), p.3360-3379</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-c72599f19143ff3ff52e28506ace84cc5271709f3321142db6ccd318e0f106fb3</citedby><cites>FETCH-LOGICAL-c537t-c72599f19143ff3ff52e28506ace84cc5271709f3321142db6ccd318e0f106fb3</cites><orcidid>0000-0003-4026-8805 ; 0000-0002-1183-0101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41380-019-0547-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41380-019-0547-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31636381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Notaras, Michael</creatorcontrib><creatorcontrib>Allen, Megan</creatorcontrib><creatorcontrib>Longo, Francesco</creatorcontrib><creatorcontrib>Volk, Nicole</creatorcontrib><creatorcontrib>Toth, Miklos</creatorcontrib><creatorcontrib>Li Jeon, Noo</creatorcontrib><creatorcontrib>Klann, Eric</creatorcontrib><creatorcontrib>Colak, Dilek</creatorcontrib><title>UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of specific mRNAs has been implicated in synaptic plasticity, the tightly controlled mechanisms that regulate local quantity of specific mRNAs remain poorly understood. Despite being the only RNA regulatory pathway that is associated with multiple mental illnesses, the nonsense-mediated mRNA decay (NMD) pathway presents an unexplored regulatory mechanism for synaptic function and plasticity. Here, we show that neuron-specific disruption of UPF2, an NMD component, in adulthood attenuates learning, memory, spine density, synaptic plasticity (L-LTP), and potentiates perseverative/repetitive behavior in mice. We report that the NMD pathway operates within dendrites to regulate Glutamate Receptor 1 (GLUR1) surface levels. Specifically, UPF2 modulates the internalization of GLUR1 and promotes its local synthesis in dendrites. We identified neuronal Prkag3 mRNA as a mechanistic substrate for NMD that contributes to the UPF2-mediated regulation of GLUR1 by limiting total GLUR1 levels. These data establish that UPF2 regulates synaptic plasticity, cognition, and local protein synthesis in dendrites, providing fundamental insight into the neuron-specific function of NMD within the brain.</description><subject>13/62</subject><subject>38</subject><subject>631/378</subject><subject>631/80</subject><subject>692/699/476/1799</subject><subject>82</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Cognition</subject><subject>Cognitive ability</subject><subject>Dendrites</subject><subject>Development and progression</subject><subject>Gene Expression Regulation</subject><subject>Genetic aspects</subject><subject>Glutamic acid receptors</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Health aspects</subject><subject>Internalization</subject><subject>Long-term potentiation</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mental disorders</subject><subject>Mental illness</subject><subject>Messenger RNA</subject><subject>Mice</subject><subject>mRNA turnover</subject><subject>Neurodevelopmental disorders</subject><subject>Neurological research</subject><subject>Neuronal Plasticity - genetics</subject><subject>Neuroplasticity</subject><subject>Neurosciences</subject><subject>Nonsense Mediated mRNA Decay</subject><subject>Pharmacotherapy</subject><subject>Physiological aspects</subject><subject>Protein biosynthesis</subject><subject>Proteolysis</subject><subject>Psychiatry</subject><subject>Psychological aspects</subject><subject>Regulation</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA-Binding Proteins - genetics</subject><subject>Synaptic density</subject><subject>Synaptic plasticity</subject><subject>Translation</subject><issn>1359-4184</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kltrFTEUhQdRbK3-AF8k4IsvU3PPzItwKK0KRUXsc8jJ7IwpM8kxyRTOvzfjqbUVJYFc9rdW2GE1zUuCTwlm3dvMCetwi0nfYsFVKx41x4Qr2Qqhusd1z0TfctLxo-ZZztcYr0XxtDliRDLJOnLc7K6-XFA0gRkyKhENMCYzmOJjQNHVYxiSL96aadqjYtIIBQY0f_20-YUnGJfJFEB5H8yucmg3mVxXX_bIhAHZOIaqvwHklmBX2-fNE2emDC9u15Pm6uL829mH9vLz-49nm8vWCqZKaxUVfe9ITzhzrk5BgXYCS2Oh49YKqojCvWOMEsLpsJXWDox0gB3B0m3ZSfPu4LtbtjMMFkJJZtK75GeT9joarx9Wgv-ux3ijlZBSUFoN3twapPhjgVz07LOFaTIB4pI1ZVgpJjFnFX39F3odlxRqe5pyxWiPGblHjWYC7YOL9V27muqN5D2vrSpSqdN_UHUMMHsbAzhf7x8IyEFgU8w5gbvrkWC9xkQfYqJrTPQaEy2q5tX9z7lT_M5FBegByLUURkh_Ovq_60_M3Mfs</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Notaras, Michael</creator><creator>Allen, Megan</creator><creator>Longo, Francesco</creator><creator>Volk, Nicole</creator><creator>Toth, Miklos</creator><creator>Li Jeon, Noo</creator><creator>Klann, Eric</creator><creator>Colak, Dilek</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4026-8805</orcidid><orcidid>https://orcid.org/0000-0002-1183-0101</orcidid></search><sort><creationdate>20201201</creationdate><title>UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function</title><author>Notaras, Michael ; Allen, Megan ; Longo, Francesco ; Volk, Nicole ; Toth, Miklos ; Li Jeon, Noo ; Klann, Eric ; Colak, Dilek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-c72599f19143ff3ff52e28506ace84cc5271709f3321142db6ccd318e0f106fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/62</topic><topic>38</topic><topic>631/378</topic><topic>631/80</topic><topic>692/699/476/1799</topic><topic>82</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Cognition</topic><topic>Cognitive ability</topic><topic>Dendrites</topic><topic>Development and progression</topic><topic>Gene Expression Regulation</topic><topic>Genetic aspects</topic><topic>Glutamic acid receptors</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Health aspects</topic><topic>Internalization</topic><topic>Long-term potentiation</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mental disorders</topic><topic>Mental illness</topic><topic>Messenger RNA</topic><topic>Mice</topic><topic>mRNA turnover</topic><topic>Neurodevelopmental disorders</topic><topic>Neurological research</topic><topic>Neuronal Plasticity - genetics</topic><topic>Neuroplasticity</topic><topic>Neurosciences</topic><topic>Nonsense Mediated mRNA Decay</topic><topic>Pharmacotherapy</topic><topic>Physiological aspects</topic><topic>Protein biosynthesis</topic><topic>Proteolysis</topic><topic>Psychiatry</topic><topic>Psychological aspects</topic><topic>Regulation</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA-Binding Proteins - genetics</topic><topic>Synaptic density</topic><topic>Synaptic plasticity</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Notaras, Michael</creatorcontrib><creatorcontrib>Allen, Megan</creatorcontrib><creatorcontrib>Longo, Francesco</creatorcontrib><creatorcontrib>Volk, Nicole</creatorcontrib><creatorcontrib>Toth, Miklos</creatorcontrib><creatorcontrib>Li Jeon, Noo</creatorcontrib><creatorcontrib>Klann, Eric</creatorcontrib><creatorcontrib>Colak, Dilek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Notaras, Michael</au><au>Allen, Megan</au><au>Longo, Francesco</au><au>Volk, Nicole</au><au>Toth, Miklos</au><au>Li Jeon, Noo</au><au>Klann, Eric</au><au>Colak, Dilek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>25</volume><issue>12</issue><spage>3360</spage><epage>3379</epage><pages>3360-3379</pages><issn>1359-4184</issn><eissn>1476-5578</eissn><abstract>Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of specific mRNAs has been implicated in synaptic plasticity, the tightly controlled mechanisms that regulate local quantity of specific mRNAs remain poorly understood. Despite being the only RNA regulatory pathway that is associated with multiple mental illnesses, the nonsense-mediated mRNA decay (NMD) pathway presents an unexplored regulatory mechanism for synaptic function and plasticity. Here, we show that neuron-specific disruption of UPF2, an NMD component, in adulthood attenuates learning, memory, spine density, synaptic plasticity (L-LTP), and potentiates perseverative/repetitive behavior in mice. We report that the NMD pathway operates within dendrites to regulate Glutamate Receptor 1 (GLUR1) surface levels. Specifically, UPF2 modulates the internalization of GLUR1 and promotes its local synthesis in dendrites. We identified neuronal Prkag3 mRNA as a mechanistic substrate for NMD that contributes to the UPF2-mediated regulation of GLUR1 by limiting total GLUR1 levels. These data establish that UPF2 regulates synaptic plasticity, cognition, and local protein synthesis in dendrites, providing fundamental insight into the neuron-specific function of NMD within the brain.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31636381</pmid><doi>10.1038/s41380-019-0547-5</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-4026-8805</orcidid><orcidid>https://orcid.org/0000-0002-1183-0101</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-4184
ispartof Molecular psychiatry, 2020-12, Vol.25 (12), p.3360-3379
issn 1359-4184
1476-5578
language eng
recordid cdi_proquest_journals_2473290313
source MEDLINE; Springer Nature - Complete Springer Journals
subjects 13/62
38
631/378
631/80
692/699/476/1799
82
Animals
Behavioral Sciences
Biological Psychology
Cognition
Cognitive ability
Dendrites
Development and progression
Gene Expression Regulation
Genetic aspects
Glutamic acid receptors
Glutamic acid receptors (ionotropic)
Health aspects
Internalization
Long-term potentiation
Medicine
Medicine & Public Health
Mental disorders
Mental illness
Messenger RNA
Mice
mRNA turnover
Neurodevelopmental disorders
Neurological research
Neuronal Plasticity - genetics
Neuroplasticity
Neurosciences
Nonsense Mediated mRNA Decay
Pharmacotherapy
Physiological aspects
Protein biosynthesis
Proteolysis
Psychiatry
Psychological aspects
Regulation
RNA, Messenger - metabolism
RNA-Binding Proteins - genetics
Synaptic density
Synaptic plasticity
Translation
title UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UPF2%20leads%20to%20degradation%20of%20dendritically%20targeted%20mRNAs%20to%20regulate%20synaptic%20plasticity%20and%20cognitive%20function&rft.jtitle=Molecular%20psychiatry&rft.au=Notaras,%20Michael&rft.date=2020-12-01&rft.volume=25&rft.issue=12&rft.spage=3360&rft.epage=3379&rft.pages=3360-3379&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/s41380-019-0547-5&rft_dat=%3Cgale_pubme%3EA649491471%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473290313&rft_id=info:pmid/31636381&rft_galeid=A649491471&rfr_iscdi=true