UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function
Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of...
Gespeichert in:
Veröffentlicht in: | Molecular psychiatry 2020-12, Vol.25 (12), p.3360-3379 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3379 |
---|---|
container_issue | 12 |
container_start_page | 3360 |
container_title | Molecular psychiatry |
container_volume | 25 |
creator | Notaras, Michael Allen, Megan Longo, Francesco Volk, Nicole Toth, Miklos Li Jeon, Noo Klann, Eric Colak, Dilek |
description | Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of specific mRNAs has been implicated in synaptic plasticity, the tightly controlled mechanisms that regulate local quantity of specific mRNAs remain poorly understood. Despite being the only RNA regulatory pathway that is associated with multiple mental illnesses, the nonsense-mediated mRNA decay (NMD) pathway presents an unexplored regulatory mechanism for synaptic function and plasticity. Here, we show that neuron-specific disruption of UPF2, an NMD component, in adulthood attenuates learning, memory, spine density, synaptic plasticity (L-LTP), and potentiates perseverative/repetitive behavior in mice. We report that the NMD pathway operates within dendrites to regulate Glutamate Receptor 1 (GLUR1) surface levels. Specifically, UPF2 modulates the internalization of GLUR1 and promotes its local synthesis in dendrites. We identified neuronal
Prkag3
mRNA as a mechanistic substrate for NMD that contributes to the UPF2-mediated regulation of GLUR1 by limiting total GLUR1 levels. These data establish that UPF2 regulates synaptic plasticity, cognition, and local protein synthesis in dendrites, providing fundamental insight into the neuron-specific function of NMD within the brain. |
doi_str_mv | 10.1038/s41380-019-0547-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_proquest_journals_2473290313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649491471</galeid><sourcerecordid>A649491471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-c72599f19143ff3ff52e28506ace84cc5271709f3321142db6ccd318e0f106fb3</originalsourceid><addsrcrecordid>eNp1kltrFTEUhQdRbK3-AF8k4IsvU3PPzItwKK0KRUXsc8jJ7IwpM8kxyRTOvzfjqbUVJYFc9rdW2GE1zUuCTwlm3dvMCetwi0nfYsFVKx41x4Qr2Qqhusd1z0TfctLxo-ZZztcYr0XxtDliRDLJOnLc7K6-XFA0gRkyKhENMCYzmOJjQNHVYxiSL96aadqjYtIIBQY0f_20-YUnGJfJFEB5H8yucmg3mVxXX_bIhAHZOIaqvwHklmBX2-fNE2emDC9u15Pm6uL829mH9vLz-49nm8vWCqZKaxUVfe9ITzhzrk5BgXYCS2Oh49YKqojCvWOMEsLpsJXWDox0gB3B0m3ZSfPu4LtbtjMMFkJJZtK75GeT9joarx9Wgv-ux3ijlZBSUFoN3twapPhjgVz07LOFaTIB4pI1ZVgpJjFnFX39F3odlxRqe5pyxWiPGblHjWYC7YOL9V27muqN5D2vrSpSqdN_UHUMMHsbAzhf7x8IyEFgU8w5gbvrkWC9xkQfYqJrTPQaEy2q5tX9z7lT_M5FBegByLUURkh_Ovq_60_M3Mfs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473290313</pqid></control><display><type>article</type><title>UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Notaras, Michael ; Allen, Megan ; Longo, Francesco ; Volk, Nicole ; Toth, Miklos ; Li Jeon, Noo ; Klann, Eric ; Colak, Dilek</creator><creatorcontrib>Notaras, Michael ; Allen, Megan ; Longo, Francesco ; Volk, Nicole ; Toth, Miklos ; Li Jeon, Noo ; Klann, Eric ; Colak, Dilek</creatorcontrib><description>Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of specific mRNAs has been implicated in synaptic plasticity, the tightly controlled mechanisms that regulate local quantity of specific mRNAs remain poorly understood. Despite being the only RNA regulatory pathway that is associated with multiple mental illnesses, the nonsense-mediated mRNA decay (NMD) pathway presents an unexplored regulatory mechanism for synaptic function and plasticity. Here, we show that neuron-specific disruption of UPF2, an NMD component, in adulthood attenuates learning, memory, spine density, synaptic plasticity (L-LTP), and potentiates perseverative/repetitive behavior in mice. We report that the NMD pathway operates within dendrites to regulate Glutamate Receptor 1 (GLUR1) surface levels. Specifically, UPF2 modulates the internalization of GLUR1 and promotes its local synthesis in dendrites. We identified neuronal
Prkag3
mRNA as a mechanistic substrate for NMD that contributes to the UPF2-mediated regulation of GLUR1 by limiting total GLUR1 levels. These data establish that UPF2 regulates synaptic plasticity, cognition, and local protein synthesis in dendrites, providing fundamental insight into the neuron-specific function of NMD within the brain.</description><identifier>ISSN: 1359-4184</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/s41380-019-0547-5</identifier><identifier>PMID: 31636381</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/62 ; 38 ; 631/378 ; 631/80 ; 692/699/476/1799 ; 82 ; Animals ; Behavioral Sciences ; Biological Psychology ; Cognition ; Cognitive ability ; Dendrites ; Development and progression ; Gene Expression Regulation ; Genetic aspects ; Glutamic acid receptors ; Glutamic acid receptors (ionotropic) ; Health aspects ; Internalization ; Long-term potentiation ; Medicine ; Medicine & Public Health ; Mental disorders ; Mental illness ; Messenger RNA ; Mice ; mRNA turnover ; Neurodevelopmental disorders ; Neurological research ; Neuronal Plasticity - genetics ; Neuroplasticity ; Neurosciences ; Nonsense Mediated mRNA Decay ; Pharmacotherapy ; Physiological aspects ; Protein biosynthesis ; Proteolysis ; Psychiatry ; Psychological aspects ; Regulation ; RNA, Messenger - metabolism ; RNA-Binding Proteins - genetics ; Synaptic density ; Synaptic plasticity ; Translation</subject><ispartof>Molecular psychiatry, 2020-12, Vol.25 (12), p.3360-3379</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-c72599f19143ff3ff52e28506ace84cc5271709f3321142db6ccd318e0f106fb3</citedby><cites>FETCH-LOGICAL-c537t-c72599f19143ff3ff52e28506ace84cc5271709f3321142db6ccd318e0f106fb3</cites><orcidid>0000-0003-4026-8805 ; 0000-0002-1183-0101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41380-019-0547-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41380-019-0547-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31636381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Notaras, Michael</creatorcontrib><creatorcontrib>Allen, Megan</creatorcontrib><creatorcontrib>Longo, Francesco</creatorcontrib><creatorcontrib>Volk, Nicole</creatorcontrib><creatorcontrib>Toth, Miklos</creatorcontrib><creatorcontrib>Li Jeon, Noo</creatorcontrib><creatorcontrib>Klann, Eric</creatorcontrib><creatorcontrib>Colak, Dilek</creatorcontrib><title>UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of specific mRNAs has been implicated in synaptic plasticity, the tightly controlled mechanisms that regulate local quantity of specific mRNAs remain poorly understood. Despite being the only RNA regulatory pathway that is associated with multiple mental illnesses, the nonsense-mediated mRNA decay (NMD) pathway presents an unexplored regulatory mechanism for synaptic function and plasticity. Here, we show that neuron-specific disruption of UPF2, an NMD component, in adulthood attenuates learning, memory, spine density, synaptic plasticity (L-LTP), and potentiates perseverative/repetitive behavior in mice. We report that the NMD pathway operates within dendrites to regulate Glutamate Receptor 1 (GLUR1) surface levels. Specifically, UPF2 modulates the internalization of GLUR1 and promotes its local synthesis in dendrites. We identified neuronal
Prkag3
mRNA as a mechanistic substrate for NMD that contributes to the UPF2-mediated regulation of GLUR1 by limiting total GLUR1 levels. These data establish that UPF2 regulates synaptic plasticity, cognition, and local protein synthesis in dendrites, providing fundamental insight into the neuron-specific function of NMD within the brain.</description><subject>13/62</subject><subject>38</subject><subject>631/378</subject><subject>631/80</subject><subject>692/699/476/1799</subject><subject>82</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Cognition</subject><subject>Cognitive ability</subject><subject>Dendrites</subject><subject>Development and progression</subject><subject>Gene Expression Regulation</subject><subject>Genetic aspects</subject><subject>Glutamic acid receptors</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Health aspects</subject><subject>Internalization</subject><subject>Long-term potentiation</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mental disorders</subject><subject>Mental illness</subject><subject>Messenger RNA</subject><subject>Mice</subject><subject>mRNA turnover</subject><subject>Neurodevelopmental disorders</subject><subject>Neurological research</subject><subject>Neuronal Plasticity - genetics</subject><subject>Neuroplasticity</subject><subject>Neurosciences</subject><subject>Nonsense Mediated mRNA Decay</subject><subject>Pharmacotherapy</subject><subject>Physiological aspects</subject><subject>Protein biosynthesis</subject><subject>Proteolysis</subject><subject>Psychiatry</subject><subject>Psychological aspects</subject><subject>Regulation</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA-Binding Proteins - genetics</subject><subject>Synaptic density</subject><subject>Synaptic plasticity</subject><subject>Translation</subject><issn>1359-4184</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kltrFTEUhQdRbK3-AF8k4IsvU3PPzItwKK0KRUXsc8jJ7IwpM8kxyRTOvzfjqbUVJYFc9rdW2GE1zUuCTwlm3dvMCetwi0nfYsFVKx41x4Qr2Qqhusd1z0TfctLxo-ZZztcYr0XxtDliRDLJOnLc7K6-XFA0gRkyKhENMCYzmOJjQNHVYxiSL96aadqjYtIIBQY0f_20-YUnGJfJFEB5H8yucmg3mVxXX_bIhAHZOIaqvwHklmBX2-fNE2emDC9u15Pm6uL829mH9vLz-49nm8vWCqZKaxUVfe9ITzhzrk5BgXYCS2Oh49YKqojCvWOMEsLpsJXWDox0gB3B0m3ZSfPu4LtbtjMMFkJJZtK75GeT9joarx9Wgv-ux3ijlZBSUFoN3twapPhjgVz07LOFaTIB4pI1ZVgpJjFnFX39F3odlxRqe5pyxWiPGblHjWYC7YOL9V27muqN5D2vrSpSqdN_UHUMMHsbAzhf7x8IyEFgU8w5gbvrkWC9xkQfYqJrTPQaEy2q5tX9z7lT_M5FBegByLUURkh_Ovq_60_M3Mfs</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Notaras, Michael</creator><creator>Allen, Megan</creator><creator>Longo, Francesco</creator><creator>Volk, Nicole</creator><creator>Toth, Miklos</creator><creator>Li Jeon, Noo</creator><creator>Klann, Eric</creator><creator>Colak, Dilek</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4026-8805</orcidid><orcidid>https://orcid.org/0000-0002-1183-0101</orcidid></search><sort><creationdate>20201201</creationdate><title>UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function</title><author>Notaras, Michael ; Allen, Megan ; Longo, Francesco ; Volk, Nicole ; Toth, Miklos ; Li Jeon, Noo ; Klann, Eric ; Colak, Dilek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-c72599f19143ff3ff52e28506ace84cc5271709f3321142db6ccd318e0f106fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/62</topic><topic>38</topic><topic>631/378</topic><topic>631/80</topic><topic>692/699/476/1799</topic><topic>82</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Cognition</topic><topic>Cognitive ability</topic><topic>Dendrites</topic><topic>Development and progression</topic><topic>Gene Expression Regulation</topic><topic>Genetic aspects</topic><topic>Glutamic acid receptors</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Health aspects</topic><topic>Internalization</topic><topic>Long-term potentiation</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mental disorders</topic><topic>Mental illness</topic><topic>Messenger RNA</topic><topic>Mice</topic><topic>mRNA turnover</topic><topic>Neurodevelopmental disorders</topic><topic>Neurological research</topic><topic>Neuronal Plasticity - genetics</topic><topic>Neuroplasticity</topic><topic>Neurosciences</topic><topic>Nonsense Mediated mRNA Decay</topic><topic>Pharmacotherapy</topic><topic>Physiological aspects</topic><topic>Protein biosynthesis</topic><topic>Proteolysis</topic><topic>Psychiatry</topic><topic>Psychological aspects</topic><topic>Regulation</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA-Binding Proteins - genetics</topic><topic>Synaptic density</topic><topic>Synaptic plasticity</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Notaras, Michael</creatorcontrib><creatorcontrib>Allen, Megan</creatorcontrib><creatorcontrib>Longo, Francesco</creatorcontrib><creatorcontrib>Volk, Nicole</creatorcontrib><creatorcontrib>Toth, Miklos</creatorcontrib><creatorcontrib>Li Jeon, Noo</creatorcontrib><creatorcontrib>Klann, Eric</creatorcontrib><creatorcontrib>Colak, Dilek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Notaras, Michael</au><au>Allen, Megan</au><au>Longo, Francesco</au><au>Volk, Nicole</au><au>Toth, Miklos</au><au>Li Jeon, Noo</au><au>Klann, Eric</au><au>Colak, Dilek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>25</volume><issue>12</issue><spage>3360</spage><epage>3379</epage><pages>3360-3379</pages><issn>1359-4184</issn><eissn>1476-5578</eissn><abstract>Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of specific mRNAs has been implicated in synaptic plasticity, the tightly controlled mechanisms that regulate local quantity of specific mRNAs remain poorly understood. Despite being the only RNA regulatory pathway that is associated with multiple mental illnesses, the nonsense-mediated mRNA decay (NMD) pathway presents an unexplored regulatory mechanism for synaptic function and plasticity. Here, we show that neuron-specific disruption of UPF2, an NMD component, in adulthood attenuates learning, memory, spine density, synaptic plasticity (L-LTP), and potentiates perseverative/repetitive behavior in mice. We report that the NMD pathway operates within dendrites to regulate Glutamate Receptor 1 (GLUR1) surface levels. Specifically, UPF2 modulates the internalization of GLUR1 and promotes its local synthesis in dendrites. We identified neuronal
Prkag3
mRNA as a mechanistic substrate for NMD that contributes to the UPF2-mediated regulation of GLUR1 by limiting total GLUR1 levels. These data establish that UPF2 regulates synaptic plasticity, cognition, and local protein synthesis in dendrites, providing fundamental insight into the neuron-specific function of NMD within the brain.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31636381</pmid><doi>10.1038/s41380-019-0547-5</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-4026-8805</orcidid><orcidid>https://orcid.org/0000-0002-1183-0101</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4184 |
ispartof | Molecular psychiatry, 2020-12, Vol.25 (12), p.3360-3379 |
issn | 1359-4184 1476-5578 |
language | eng |
recordid | cdi_proquest_journals_2473290313 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | 13/62 38 631/378 631/80 692/699/476/1799 82 Animals Behavioral Sciences Biological Psychology Cognition Cognitive ability Dendrites Development and progression Gene Expression Regulation Genetic aspects Glutamic acid receptors Glutamic acid receptors (ionotropic) Health aspects Internalization Long-term potentiation Medicine Medicine & Public Health Mental disorders Mental illness Messenger RNA Mice mRNA turnover Neurodevelopmental disorders Neurological research Neuronal Plasticity - genetics Neuroplasticity Neurosciences Nonsense Mediated mRNA Decay Pharmacotherapy Physiological aspects Protein biosynthesis Proteolysis Psychiatry Psychological aspects Regulation RNA, Messenger - metabolism RNA-Binding Proteins - genetics Synaptic density Synaptic plasticity Translation |
title | UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UPF2%20leads%20to%20degradation%20of%20dendritically%20targeted%20mRNAs%20to%20regulate%20synaptic%20plasticity%20and%20cognitive%20function&rft.jtitle=Molecular%20psychiatry&rft.au=Notaras,%20Michael&rft.date=2020-12-01&rft.volume=25&rft.issue=12&rft.spage=3360&rft.epage=3379&rft.pages=3360-3379&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/s41380-019-0547-5&rft_dat=%3Cgale_pubme%3EA649491471%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473290313&rft_id=info:pmid/31636381&rft_galeid=A649491471&rfr_iscdi=true |