Quasi-stationary states of game-driven systems: A dynamical approach
Evolutionary game theory is a framework to formalize the evolution of collectives (“populations”) of competing agents that are playing a game and, after every round, update their strategies to maximize individual payoffs. There are two complementary approaches to modeling evolution of player populat...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2020-12, Vol.30 (12), p.123145-123145 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123145 |
---|---|
container_issue | 12 |
container_start_page | 123145 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 30 |
creator | Denisov, Sergey Vershinina, Olga Thingna, Juzar Hänggi, Peter Ivanchenko, Mikhail |
description | Evolutionary game theory is a framework to formalize the evolution of collectives (“populations”) of competing agents that are playing a game and, after every round, update their strategies to maximize individual payoffs. There are two complementary approaches to modeling evolution of player populations. The first addresses essentially finite populations by implementing the apparatus of Markov chains. The second assumes that the populations are infinite and operates with a system of mean-field deterministic differential equations. By using a model of two antagonistic populations, which are playing a game with stationary or periodically varying payoffs, we demonstrate that it exhibits metastable dynamics that is reducible neither to an immediate transition to a fixation (extinction of all but one strategy in a finite-size population) nor to the mean-field picture. In the case of stationary payoffs, this dynamics can be captured with a system of stochastic differential equations and interpreted as a stochastic Hopf bifurcation. In the case of varying payoffs, the metastable dynamics is much more complex than the dynamics of the means. |
doi_str_mv | 10.1063/5.0019736 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473277207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473277207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-d36b8e8182addbc147ed5f58fb3cce2108172130410ad34d479d708d83e218743</originalsourceid><addsrcrecordid>eNp90FtLwzAYBuAgipvTC_-AFLxRoTOnNql3Yx5hIIJehzRJtaMnk3bQf29K5wQFr_JBHr7DC8ApgnMEY3IdzSFECSPxHpgiyJOQxRzvD3VEQxRBOAFHzq2hV5hEh2BCCOEQEjIFty-ddHnoWtnmdSVtHwylcUGdBe-yNKG2-cZUgetda0p3EywC3VeyzJUsAtk0tpbq4xgcZLJw5mT7zsDb_d3r8jFcPT88LRerUFHE21CTOOWGI46l1qlClBkdZRHPUqKUwX5zxDAikCIoNaGaskQzyDUn_pMzSmbgYuzrx352xrWizJ0yRSErU3dOYMooTWLuL5uB8190XXe28tsNimDGMGReXY5K2do5azLR2Lz0KQgExRCtiMQ2Wm_Pth27tDR6J7-z9OBqBE7lY5w7s6ntTyfR6Ow__Hf0FzU7jVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473277207</pqid></control><display><type>article</type><title>Quasi-stationary states of game-driven systems: A dynamical approach</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Denisov, Sergey ; Vershinina, Olga ; Thingna, Juzar ; Hänggi, Peter ; Ivanchenko, Mikhail</creator><creatorcontrib>Denisov, Sergey ; Vershinina, Olga ; Thingna, Juzar ; Hänggi, Peter ; Ivanchenko, Mikhail</creatorcontrib><description>Evolutionary game theory is a framework to formalize the evolution of collectives (“populations”) of competing agents that are playing a game and, after every round, update their strategies to maximize individual payoffs. There are two complementary approaches to modeling evolution of player populations. The first addresses essentially finite populations by implementing the apparatus of Markov chains. The second assumes that the populations are infinite and operates with a system of mean-field deterministic differential equations. By using a model of two antagonistic populations, which are playing a game with stationary or periodically varying payoffs, we demonstrate that it exhibits metastable dynamics that is reducible neither to an immediate transition to a fixation (extinction of all but one strategy in a finite-size population) nor to the mean-field picture. In the case of stationary payoffs, this dynamics can be captured with a system of stochastic differential equations and interpreted as a stochastic Hopf bifurcation. In the case of varying payoffs, the metastable dynamics is much more complex than the dynamics of the means.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0019736</identifier><identifier>PMID: 33380033</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Differential equations ; Dynamics ; Evolution ; Game theory ; Hopf bifurcation ; Markov chains ; Mathematical models ; Populations</subject><ispartof>Chaos (Woodbury, N.Y.), 2020-12, Vol.30 (12), p.123145-123145</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-d36b8e8182addbc147ed5f58fb3cce2108172130410ad34d479d708d83e218743</citedby><cites>FETCH-LOGICAL-c418t-d36b8e8182addbc147ed5f58fb3cce2108172130410ad34d479d708d83e218743</cites><orcidid>0000-0002-3804-0206 ; 0000-0002-3917-9592 ; 0000-0001-6679-2563 ; 0000-0001-5512-3954 ; 0000000155123954 ; 0000000166792563 ; 0000000239179592 ; 0000000238040206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33380033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Denisov, Sergey</creatorcontrib><creatorcontrib>Vershinina, Olga</creatorcontrib><creatorcontrib>Thingna, Juzar</creatorcontrib><creatorcontrib>Hänggi, Peter</creatorcontrib><creatorcontrib>Ivanchenko, Mikhail</creatorcontrib><title>Quasi-stationary states of game-driven systems: A dynamical approach</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Evolutionary game theory is a framework to formalize the evolution of collectives (“populations”) of competing agents that are playing a game and, after every round, update their strategies to maximize individual payoffs. There are two complementary approaches to modeling evolution of player populations. The first addresses essentially finite populations by implementing the apparatus of Markov chains. The second assumes that the populations are infinite and operates with a system of mean-field deterministic differential equations. By using a model of two antagonistic populations, which are playing a game with stationary or periodically varying payoffs, we demonstrate that it exhibits metastable dynamics that is reducible neither to an immediate transition to a fixation (extinction of all but one strategy in a finite-size population) nor to the mean-field picture. In the case of stationary payoffs, this dynamics can be captured with a system of stochastic differential equations and interpreted as a stochastic Hopf bifurcation. In the case of varying payoffs, the metastable dynamics is much more complex than the dynamics of the means.</description><subject>Differential equations</subject><subject>Dynamics</subject><subject>Evolution</subject><subject>Game theory</subject><subject>Hopf bifurcation</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Populations</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90FtLwzAYBuAgipvTC_-AFLxRoTOnNql3Yx5hIIJehzRJtaMnk3bQf29K5wQFr_JBHr7DC8ApgnMEY3IdzSFECSPxHpgiyJOQxRzvD3VEQxRBOAFHzq2hV5hEh2BCCOEQEjIFty-ddHnoWtnmdSVtHwylcUGdBe-yNKG2-cZUgetda0p3EywC3VeyzJUsAtk0tpbq4xgcZLJw5mT7zsDb_d3r8jFcPT88LRerUFHE21CTOOWGI46l1qlClBkdZRHPUqKUwX5zxDAikCIoNaGaskQzyDUn_pMzSmbgYuzrx352xrWizJ0yRSErU3dOYMooTWLuL5uB8190XXe28tsNimDGMGReXY5K2do5azLR2Lz0KQgExRCtiMQ2Wm_Pth27tDR6J7-z9OBqBE7lY5w7s6ntTyfR6Ow__Hf0FzU7jVA</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Denisov, Sergey</creator><creator>Vershinina, Olga</creator><creator>Thingna, Juzar</creator><creator>Hänggi, Peter</creator><creator>Ivanchenko, Mikhail</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3804-0206</orcidid><orcidid>https://orcid.org/0000-0002-3917-9592</orcidid><orcidid>https://orcid.org/0000-0001-6679-2563</orcidid><orcidid>https://orcid.org/0000-0001-5512-3954</orcidid><orcidid>https://orcid.org/0000000155123954</orcidid><orcidid>https://orcid.org/0000000166792563</orcidid><orcidid>https://orcid.org/0000000239179592</orcidid><orcidid>https://orcid.org/0000000238040206</orcidid></search><sort><creationdate>202012</creationdate><title>Quasi-stationary states of game-driven systems: A dynamical approach</title><author>Denisov, Sergey ; Vershinina, Olga ; Thingna, Juzar ; Hänggi, Peter ; Ivanchenko, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-d36b8e8182addbc147ed5f58fb3cce2108172130410ad34d479d708d83e218743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Differential equations</topic><topic>Dynamics</topic><topic>Evolution</topic><topic>Game theory</topic><topic>Hopf bifurcation</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Populations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denisov, Sergey</creatorcontrib><creatorcontrib>Vershinina, Olga</creatorcontrib><creatorcontrib>Thingna, Juzar</creatorcontrib><creatorcontrib>Hänggi, Peter</creatorcontrib><creatorcontrib>Ivanchenko, Mikhail</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denisov, Sergey</au><au>Vershinina, Olga</au><au>Thingna, Juzar</au><au>Hänggi, Peter</au><au>Ivanchenko, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-stationary states of game-driven systems: A dynamical approach</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2020-12</date><risdate>2020</risdate><volume>30</volume><issue>12</issue><spage>123145</spage><epage>123145</epage><pages>123145-123145</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Evolutionary game theory is a framework to formalize the evolution of collectives (“populations”) of competing agents that are playing a game and, after every round, update their strategies to maximize individual payoffs. There are two complementary approaches to modeling evolution of player populations. The first addresses essentially finite populations by implementing the apparatus of Markov chains. The second assumes that the populations are infinite and operates with a system of mean-field deterministic differential equations. By using a model of two antagonistic populations, which are playing a game with stationary or periodically varying payoffs, we demonstrate that it exhibits metastable dynamics that is reducible neither to an immediate transition to a fixation (extinction of all but one strategy in a finite-size population) nor to the mean-field picture. In the case of stationary payoffs, this dynamics can be captured with a system of stochastic differential equations and interpreted as a stochastic Hopf bifurcation. In the case of varying payoffs, the metastable dynamics is much more complex than the dynamics of the means.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33380033</pmid><doi>10.1063/5.0019736</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3804-0206</orcidid><orcidid>https://orcid.org/0000-0002-3917-9592</orcidid><orcidid>https://orcid.org/0000-0001-6679-2563</orcidid><orcidid>https://orcid.org/0000-0001-5512-3954</orcidid><orcidid>https://orcid.org/0000000155123954</orcidid><orcidid>https://orcid.org/0000000166792563</orcidid><orcidid>https://orcid.org/0000000239179592</orcidid><orcidid>https://orcid.org/0000000238040206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2020-12, Vol.30 (12), p.123145-123145 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_proquest_journals_2473277207 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Differential equations Dynamics Evolution Game theory Hopf bifurcation Markov chains Mathematical models Populations |
title | Quasi-stationary states of game-driven systems: A dynamical approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-stationary%20states%20of%20game-driven%20systems:%20A%20dynamical%20approach&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Denisov,%20Sergey&rft.date=2020-12&rft.volume=30&rft.issue=12&rft.spage=123145&rft.epage=123145&rft.pages=123145-123145&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0019736&rft_dat=%3Cproquest_cross%3E2473277207%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473277207&rft_id=info:pmid/33380033&rfr_iscdi=true |