Water Body Detection in High-Resolution SAR Images With Cascaded Fully-Convolutional Network and Variable Focal Loss

The water body detection in high-resolution synthetic aperture radar (SAR) images is a challenging task due to the changing interference caused by multiple imaging conditions and complex land backgrounds. Inspired by the excellent adaptability of deep neural networks (DNNs) and the structured modeli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2021-01, Vol.59 (1), p.316-332
Hauptverfasser: Zhang, Jinsong, Xing, Mengdao, Sun, Guang-Cai, Chen, Jianlai, Li, Mengya, Hu, Yihua, Bao, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue 1
container_start_page 316
container_title IEEE transactions on geoscience and remote sensing
container_volume 59
creator Zhang, Jinsong
Xing, Mengdao
Sun, Guang-Cai
Chen, Jianlai
Li, Mengya
Hu, Yihua
Bao, Zheng
description The water body detection in high-resolution synthetic aperture radar (SAR) images is a challenging task due to the changing interference caused by multiple imaging conditions and complex land backgrounds. Inspired by the excellent adaptability of deep neural networks (DNNs) and the structured modeling capabilities of probabilistic graphical models, the cascaded fully-convolutional network (CFCN) is proposed to improve the performance of water body detection in high-resolution SAR images. First, for the resolution loss caused by convolutions with large stride in traditional convolutional neural network (CNN), the fully-convolutional upsampling pyramid networks (UPNs) are proposed to suppress this loss and realize pixel-wise water body detection. Then considering blurred water boundary, the fully-convolutional conditional random fields (FC-CRFs) are introduced to UPNs, which reduce computational complexity and lead to the automatic learning of Gaussian kernels in CRFs and the higher boundary accuracy. Furthermore, to eliminate the inefficient training caused by imbalanced categorical distribution in the training data set, a novel variable focal loss (VFL) function is proposed, which replaces the constant weighting factor of focal loss with the frequency-dependent factor. The proposed methods can not only improve the pixel accuracy and boundary accuracy but also perform well in detection robustness and speed. Results of GaoFen-3 SAR images are presented to validate the proposed approaches.
doi_str_mv 10.1109/TGRS.2020.2999405
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2473270747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9118970</ieee_id><sourcerecordid>2473270747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-778b57d017cb05aff5ebc7fe90da2a23301685bf72577295eb1c5de23940f23d3</originalsourceid><addsrcrecordid>eNo9kF9PwjAUxRujiYh-AONLE5-HbbfS9RFR_iREE0B5bLr2DoZj1XbT8O0dQny6yT3n3Jz7Q-iWkh6lRD4sx_NFjxFGekxKmRB-hjqU8zQi_SQ5Rx1CZT9iqWSX6CqELSE04VR0UL3SNXj86OweP0ENpi5chYsKT4r1JppDcGXzt1oM5ni602sIeFXUGzzUwWgLFo-astxHQ1d9n6y6xC9Q_zj_gXVl8bv2hc5KwCNnWmnmQrhGF7kuA9ycZhe9jZ6Xw0k0ex1Ph4NZZJiM60iINOPCEipMRrjOcw6ZETlIYjXTLI4J7ac8ywXjQjDZqtRwCyxu_89ZbOMuuj_e_fTuq4FQq61rfFswKJaImAki2tFF9Ogyvu3mIVefvthpv1eUqANcdYCrDnDVCW6buTtmCgD490tKUylI_Auhw3XZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473270747</pqid></control><display><type>article</type><title>Water Body Detection in High-Resolution SAR Images With Cascaded Fully-Convolutional Network and Variable Focal Loss</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jinsong ; Xing, Mengdao ; Sun, Guang-Cai ; Chen, Jianlai ; Li, Mengya ; Hu, Yihua ; Bao, Zheng</creator><creatorcontrib>Zhang, Jinsong ; Xing, Mengdao ; Sun, Guang-Cai ; Chen, Jianlai ; Li, Mengya ; Hu, Yihua ; Bao, Zheng</creatorcontrib><description>The water body detection in high-resolution synthetic aperture radar (SAR) images is a challenging task due to the changing interference caused by multiple imaging conditions and complex land backgrounds. Inspired by the excellent adaptability of deep neural networks (DNNs) and the structured modeling capabilities of probabilistic graphical models, the cascaded fully-convolutional network (CFCN) is proposed to improve the performance of water body detection in high-resolution SAR images. First, for the resolution loss caused by convolutions with large stride in traditional convolutional neural network (CNN), the fully-convolutional upsampling pyramid networks (UPNs) are proposed to suppress this loss and realize pixel-wise water body detection. Then considering blurred water boundary, the fully-convolutional conditional random fields (FC-CRFs) are introduced to UPNs, which reduce computational complexity and lead to the automatic learning of Gaussian kernels in CRFs and the higher boundary accuracy. Furthermore, to eliminate the inefficient training caused by imbalanced categorical distribution in the training data set, a novel variable focal loss (VFL) function is proposed, which replaces the constant weighting factor of focal loss with the frequency-dependent factor. The proposed methods can not only improve the pixel accuracy and boundary accuracy but also perform well in detection robustness and speed. Results of GaoFen-3 SAR images are presented to validate the proposed approaches.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.2999405</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Adaptability ; Artificial neural networks ; Complexity ; Computer applications ; Conditional random field (CRF) ; Conditional random fields ; Detection ; Feature extraction ; Frequency dependence ; fully convolutional network (FCN) ; High resolution ; high-resolution synthetic aperture radar (SAR) ; Image resolution ; loss function ; Machine learning ; Neural networks ; Pixels ; Radar imaging ; Radar polarimetry ; Remote sensing ; Resolution ; SAR (radar) ; Scattering ; Semantics ; Synthetic aperture radar ; Training ; Water bodies ; water body detection ; Water boundary</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2021-01, Vol.59 (1), p.316-332</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-778b57d017cb05aff5ebc7fe90da2a23301685bf72577295eb1c5de23940f23d3</citedby><cites>FETCH-LOGICAL-c293t-778b57d017cb05aff5ebc7fe90da2a23301685bf72577295eb1c5de23940f23d3</cites><orcidid>0000-0002-6482-0863 ; 0000-0002-8639-9336 ; 0000-0002-4084-0915 ; 0000-0002-1004-7721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9118970$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9118970$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jinsong</creatorcontrib><creatorcontrib>Xing, Mengdao</creatorcontrib><creatorcontrib>Sun, Guang-Cai</creatorcontrib><creatorcontrib>Chen, Jianlai</creatorcontrib><creatorcontrib>Li, Mengya</creatorcontrib><creatorcontrib>Hu, Yihua</creatorcontrib><creatorcontrib>Bao, Zheng</creatorcontrib><title>Water Body Detection in High-Resolution SAR Images With Cascaded Fully-Convolutional Network and Variable Focal Loss</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The water body detection in high-resolution synthetic aperture radar (SAR) images is a challenging task due to the changing interference caused by multiple imaging conditions and complex land backgrounds. Inspired by the excellent adaptability of deep neural networks (DNNs) and the structured modeling capabilities of probabilistic graphical models, the cascaded fully-convolutional network (CFCN) is proposed to improve the performance of water body detection in high-resolution SAR images. First, for the resolution loss caused by convolutions with large stride in traditional convolutional neural network (CNN), the fully-convolutional upsampling pyramid networks (UPNs) are proposed to suppress this loss and realize pixel-wise water body detection. Then considering blurred water boundary, the fully-convolutional conditional random fields (FC-CRFs) are introduced to UPNs, which reduce computational complexity and lead to the automatic learning of Gaussian kernels in CRFs and the higher boundary accuracy. Furthermore, to eliminate the inefficient training caused by imbalanced categorical distribution in the training data set, a novel variable focal loss (VFL) function is proposed, which replaces the constant weighting factor of focal loss with the frequency-dependent factor. The proposed methods can not only improve the pixel accuracy and boundary accuracy but also perform well in detection robustness and speed. Results of GaoFen-3 SAR images are presented to validate the proposed approaches.</description><subject>Accuracy</subject><subject>Adaptability</subject><subject>Artificial neural networks</subject><subject>Complexity</subject><subject>Computer applications</subject><subject>Conditional random field (CRF)</subject><subject>Conditional random fields</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>Frequency dependence</subject><subject>fully convolutional network (FCN)</subject><subject>High resolution</subject><subject>high-resolution synthetic aperture radar (SAR)</subject><subject>Image resolution</subject><subject>loss function</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Pixels</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Remote sensing</subject><subject>Resolution</subject><subject>SAR (radar)</subject><subject>Scattering</subject><subject>Semantics</subject><subject>Synthetic aperture radar</subject><subject>Training</subject><subject>Water bodies</subject><subject>water body detection</subject><subject>Water boundary</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9PwjAUxRujiYh-AONLE5-HbbfS9RFR_iREE0B5bLr2DoZj1XbT8O0dQny6yT3n3Jz7Q-iWkh6lRD4sx_NFjxFGekxKmRB-hjqU8zQi_SQ5Rx1CZT9iqWSX6CqELSE04VR0UL3SNXj86OweP0ENpi5chYsKT4r1JppDcGXzt1oM5ni602sIeFXUGzzUwWgLFo-astxHQ1d9n6y6xC9Q_zj_gXVl8bv2hc5KwCNnWmnmQrhGF7kuA9ycZhe9jZ6Xw0k0ex1Ph4NZZJiM60iINOPCEipMRrjOcw6ZETlIYjXTLI4J7ac8ywXjQjDZqtRwCyxu_89ZbOMuuj_e_fTuq4FQq61rfFswKJaImAki2tFF9Ogyvu3mIVefvthpv1eUqANcdYCrDnDVCW6buTtmCgD490tKUylI_Auhw3XZ</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Zhang, Jinsong</creator><creator>Xing, Mengdao</creator><creator>Sun, Guang-Cai</creator><creator>Chen, Jianlai</creator><creator>Li, Mengya</creator><creator>Hu, Yihua</creator><creator>Bao, Zheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6482-0863</orcidid><orcidid>https://orcid.org/0000-0002-8639-9336</orcidid><orcidid>https://orcid.org/0000-0002-4084-0915</orcidid><orcidid>https://orcid.org/0000-0002-1004-7721</orcidid></search><sort><creationdate>202101</creationdate><title>Water Body Detection in High-Resolution SAR Images With Cascaded Fully-Convolutional Network and Variable Focal Loss</title><author>Zhang, Jinsong ; Xing, Mengdao ; Sun, Guang-Cai ; Chen, Jianlai ; Li, Mengya ; Hu, Yihua ; Bao, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-778b57d017cb05aff5ebc7fe90da2a23301685bf72577295eb1c5de23940f23d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Adaptability</topic><topic>Artificial neural networks</topic><topic>Complexity</topic><topic>Computer applications</topic><topic>Conditional random field (CRF)</topic><topic>Conditional random fields</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>Frequency dependence</topic><topic>fully convolutional network (FCN)</topic><topic>High resolution</topic><topic>high-resolution synthetic aperture radar (SAR)</topic><topic>Image resolution</topic><topic>loss function</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Pixels</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Remote sensing</topic><topic>Resolution</topic><topic>SAR (radar)</topic><topic>Scattering</topic><topic>Semantics</topic><topic>Synthetic aperture radar</topic><topic>Training</topic><topic>Water bodies</topic><topic>water body detection</topic><topic>Water boundary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jinsong</creatorcontrib><creatorcontrib>Xing, Mengdao</creatorcontrib><creatorcontrib>Sun, Guang-Cai</creatorcontrib><creatorcontrib>Chen, Jianlai</creatorcontrib><creatorcontrib>Li, Mengya</creatorcontrib><creatorcontrib>Hu, Yihua</creatorcontrib><creatorcontrib>Bao, Zheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jinsong</au><au>Xing, Mengdao</au><au>Sun, Guang-Cai</au><au>Chen, Jianlai</au><au>Li, Mengya</au><au>Hu, Yihua</au><au>Bao, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Body Detection in High-Resolution SAR Images With Cascaded Fully-Convolutional Network and Variable Focal Loss</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2021-01</date><risdate>2021</risdate><volume>59</volume><issue>1</issue><spage>316</spage><epage>332</epage><pages>316-332</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The water body detection in high-resolution synthetic aperture radar (SAR) images is a challenging task due to the changing interference caused by multiple imaging conditions and complex land backgrounds. Inspired by the excellent adaptability of deep neural networks (DNNs) and the structured modeling capabilities of probabilistic graphical models, the cascaded fully-convolutional network (CFCN) is proposed to improve the performance of water body detection in high-resolution SAR images. First, for the resolution loss caused by convolutions with large stride in traditional convolutional neural network (CNN), the fully-convolutional upsampling pyramid networks (UPNs) are proposed to suppress this loss and realize pixel-wise water body detection. Then considering blurred water boundary, the fully-convolutional conditional random fields (FC-CRFs) are introduced to UPNs, which reduce computational complexity and lead to the automatic learning of Gaussian kernels in CRFs and the higher boundary accuracy. Furthermore, to eliminate the inefficient training caused by imbalanced categorical distribution in the training data set, a novel variable focal loss (VFL) function is proposed, which replaces the constant weighting factor of focal loss with the frequency-dependent factor. The proposed methods can not only improve the pixel accuracy and boundary accuracy but also perform well in detection robustness and speed. Results of GaoFen-3 SAR images are presented to validate the proposed approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.2999405</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6482-0863</orcidid><orcidid>https://orcid.org/0000-0002-8639-9336</orcidid><orcidid>https://orcid.org/0000-0002-4084-0915</orcidid><orcidid>https://orcid.org/0000-0002-1004-7721</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2021-01, Vol.59 (1), p.316-332
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2473270747
source IEEE Electronic Library (IEL)
subjects Accuracy
Adaptability
Artificial neural networks
Complexity
Computer applications
Conditional random field (CRF)
Conditional random fields
Detection
Feature extraction
Frequency dependence
fully convolutional network (FCN)
High resolution
high-resolution synthetic aperture radar (SAR)
Image resolution
loss function
Machine learning
Neural networks
Pixels
Radar imaging
Radar polarimetry
Remote sensing
Resolution
SAR (radar)
Scattering
Semantics
Synthetic aperture radar
Training
Water bodies
water body detection
Water boundary
title Water Body Detection in High-Resolution SAR Images With Cascaded Fully-Convolutional Network and Variable Focal Loss
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Body%20Detection%20in%20High-Resolution%20SAR%20Images%20With%20Cascaded%20Fully-Convolutional%20Network%20and%20Variable%20Focal%20Loss&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhang,%20Jinsong&rft.date=2021-01&rft.volume=59&rft.issue=1&rft.spage=316&rft.epage=332&rft.pages=316-332&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.2999405&rft_dat=%3Cproquest_RIE%3E2473270747%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473270747&rft_id=info:pmid/&rft_ieee_id=9118970&rfr_iscdi=true