Transfer learning with chest X-rays for ER patient classification

One of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We conducted a retrospective study with the collected data of 171 ER patients....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-12, Vol.10 (1), p.20900-20900, Article 20900
Hauptverfasser: Stubblefield, Jonathan, Hervert, Mitchell, Causey, Jason L., Qualls, Jake A., Dong, Wei, Cai, Lingrui, Fowler, Jennifer, Bellis, Emily, Walker, Karl, Moore, Jason H., Nehring, Sara, Huang, Xiuzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20900
container_issue 1
container_start_page 20900
container_title Scientific reports
container_volume 10
creator Stubblefield, Jonathan
Hervert, Mitchell
Causey, Jason L.
Qualls, Jake A.
Dong, Wei
Cai, Lingrui
Fowler, Jennifer
Bellis, Emily
Walker, Karl
Moore, Jason H.
Nehring, Sara
Huang, Xiuzhen
description One of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We conducted a retrospective study with the collected data of 171 ER patients. ER patient classification for cardiac and infection causes was evaluated with clinical data and chest X-ray image data. We show that a deep-learning model trained with an external image data set can be used to extract image features and improve the classification accuracy of a data set that does not contain enough image data to train a deep-learning model. An analysis of clinical feature importance was performed to identify the most important clinical features for ER patient classification. The current model is publicly available with an interface at the web link: http://nbttranslationalresearch.org/ .
doi_str_mv 10.1038/s41598-020-78060-4
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2473270746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473270746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1e65c3b9e39706df3e11d9f8c7d2fb5aa0f4ce944cbb08a77002bd8bb9dca98d3</originalsourceid><addsrcrecordid>eNqNkV1rFDEYhYMottT-AS9kwBtBpuZrJsmNUJaqhYIgFbwLSSbZTZlN1mTG0n_vu526Vi_E3CQhzzm8JwehlwSfEczku8pJp2SLKW6FxD1u-RN0TDHvWsooffrofIROa73BsDqqOFHP0RFjtKecdsfo_LqYVIMvzehNSTGtm9s4bRq38XVqvrXF3NUm5NJcfGl2Zoo-TY0bTa0xRAf3nF6gZ8GM1Z8-7Cfo64eL69Wn9urzx8vV-VXruOBTS3zfOWaVZ0rgfgjMEzKoIJ0YaLCdMThw5xXnzlosjRAYUztIa9XgjJIDO0HvF9_dbLd-cDBJMaPelbg15U5nE_WfLylu9Dr_0GAled-DwZsHg5K_zxBPb2N1fhxN8nmumu4hjInoAH39F3qT55IgHlCCUYEF3xvShXIl11p8OAxDsN6XpJeSNJSk70vSHESvHsc4SH5VAsDbBbj1Nofq4MudP2DQYo-lEh2HE6FAy_-nV3G6r2yV5zSBlC3SCnha-_I75D_m_wlAO74k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473270746</pqid></control><display><type>article</type><title>Transfer learning with chest X-rays for ER patient classification</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Stubblefield, Jonathan ; Hervert, Mitchell ; Causey, Jason L. ; Qualls, Jake A. ; Dong, Wei ; Cai, Lingrui ; Fowler, Jennifer ; Bellis, Emily ; Walker, Karl ; Moore, Jason H. ; Nehring, Sara ; Huang, Xiuzhen</creator><creatorcontrib>Stubblefield, Jonathan ; Hervert, Mitchell ; Causey, Jason L. ; Qualls, Jake A. ; Dong, Wei ; Cai, Lingrui ; Fowler, Jennifer ; Bellis, Emily ; Walker, Karl ; Moore, Jason H. ; Nehring, Sara ; Huang, Xiuzhen</creatorcontrib><description>One of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We conducted a retrospective study with the collected data of 171 ER patients. ER patient classification for cardiac and infection causes was evaluated with clinical data and chest X-ray image data. We show that a deep-learning model trained with an external image data set can be used to extract image features and improve the classification accuracy of a data set that does not contain enough image data to train a deep-learning model. An analysis of clinical feature importance was performed to identify the most important clinical features for ER patient classification. The current model is publicly available with an interface at the web link: http://nbttranslationalresearch.org/ .</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-78060-4</identifier><identifier>PMID: 33262425</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 639/705 ; 692/308 ; 692/699 ; Chest ; Classification ; Deep Learning ; Disease - classification ; Emergency medical care ; Emergency Service, Hospital ; Heart ; Humanities and Social Sciences ; Humans ; multidisciplinary ; Multidisciplinary Sciences ; Patients - classification ; Radiography, Thoracic ; Respiratory distress syndrome ; Respiratory Distress Syndrome - diagnostic imaging ; Respiratory Distress Syndrome - etiology ; Retrospective Studies ; Science ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Science (multidisciplinary) ; Transfer learning ; X-rays</subject><ispartof>Scientific reports, 2020-12, Vol.10 (1), p.20900-20900, Article 20900</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000608975400012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c474t-1e65c3b9e39706df3e11d9f8c7d2fb5aa0f4ce944cbb08a77002bd8bb9dca98d3</citedby><cites>FETCH-LOGICAL-c474t-1e65c3b9e39706df3e11d9f8c7d2fb5aa0f4ce944cbb08a77002bd8bb9dca98d3</cites><orcidid>0000-0002-5015-1099 ; 0000-0001-5132-8872 ; 0000-0002-3985-2919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708466/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708466/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2115,27929,27930,28253,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33262425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stubblefield, Jonathan</creatorcontrib><creatorcontrib>Hervert, Mitchell</creatorcontrib><creatorcontrib>Causey, Jason L.</creatorcontrib><creatorcontrib>Qualls, Jake A.</creatorcontrib><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Cai, Lingrui</creatorcontrib><creatorcontrib>Fowler, Jennifer</creatorcontrib><creatorcontrib>Bellis, Emily</creatorcontrib><creatorcontrib>Walker, Karl</creatorcontrib><creatorcontrib>Moore, Jason H.</creatorcontrib><creatorcontrib>Nehring, Sara</creatorcontrib><creatorcontrib>Huang, Xiuzhen</creatorcontrib><title>Transfer learning with chest X-rays for ER patient classification</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><addtitle>Sci Rep</addtitle><description>One of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We conducted a retrospective study with the collected data of 171 ER patients. ER patient classification for cardiac and infection causes was evaluated with clinical data and chest X-ray image data. We show that a deep-learning model trained with an external image data set can be used to extract image features and improve the classification accuracy of a data set that does not contain enough image data to train a deep-learning model. An analysis of clinical feature importance was performed to identify the most important clinical features for ER patient classification. The current model is publicly available with an interface at the web link: http://nbttranslationalresearch.org/ .</description><subject>631/114</subject><subject>639/705</subject><subject>692/308</subject><subject>692/699</subject><subject>Chest</subject><subject>Classification</subject><subject>Deep Learning</subject><subject>Disease - classification</subject><subject>Emergency medical care</subject><subject>Emergency Service, Hospital</subject><subject>Heart</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Patients - classification</subject><subject>Radiography, Thoracic</subject><subject>Respiratory distress syndrome</subject><subject>Respiratory Distress Syndrome - diagnostic imaging</subject><subject>Respiratory Distress Syndrome - etiology</subject><subject>Retrospective Studies</subject><subject>Science</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Transfer learning</subject><subject>X-rays</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV1rFDEYhYMottT-AS9kwBtBpuZrJsmNUJaqhYIgFbwLSSbZTZlN1mTG0n_vu526Vi_E3CQhzzm8JwehlwSfEczku8pJp2SLKW6FxD1u-RN0TDHvWsooffrofIROa73BsDqqOFHP0RFjtKecdsfo_LqYVIMvzehNSTGtm9s4bRq38XVqvrXF3NUm5NJcfGl2Zoo-TY0bTa0xRAf3nF6gZ8GM1Z8-7Cfo64eL69Wn9urzx8vV-VXruOBTS3zfOWaVZ0rgfgjMEzKoIJ0YaLCdMThw5xXnzlosjRAYUztIa9XgjJIDO0HvF9_dbLd-cDBJMaPelbg15U5nE_WfLylu9Dr_0GAled-DwZsHg5K_zxBPb2N1fhxN8nmumu4hjInoAH39F3qT55IgHlCCUYEF3xvShXIl11p8OAxDsN6XpJeSNJSk70vSHESvHsc4SH5VAsDbBbj1Nofq4MudP2DQYo-lEh2HE6FAy_-nV3G6r2yV5zSBlC3SCnha-_I75D_m_wlAO74k</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Stubblefield, Jonathan</creator><creator>Hervert, Mitchell</creator><creator>Causey, Jason L.</creator><creator>Qualls, Jake A.</creator><creator>Dong, Wei</creator><creator>Cai, Lingrui</creator><creator>Fowler, Jennifer</creator><creator>Bellis, Emily</creator><creator>Walker, Karl</creator><creator>Moore, Jason H.</creator><creator>Nehring, Sara</creator><creator>Huang, Xiuzhen</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5015-1099</orcidid><orcidid>https://orcid.org/0000-0001-5132-8872</orcidid><orcidid>https://orcid.org/0000-0002-3985-2919</orcidid></search><sort><creationdate>20201201</creationdate><title>Transfer learning with chest X-rays for ER patient classification</title><author>Stubblefield, Jonathan ; Hervert, Mitchell ; Causey, Jason L. ; Qualls, Jake A. ; Dong, Wei ; Cai, Lingrui ; Fowler, Jennifer ; Bellis, Emily ; Walker, Karl ; Moore, Jason H. ; Nehring, Sara ; Huang, Xiuzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1e65c3b9e39706df3e11d9f8c7d2fb5aa0f4ce944cbb08a77002bd8bb9dca98d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114</topic><topic>639/705</topic><topic>692/308</topic><topic>692/699</topic><topic>Chest</topic><topic>Classification</topic><topic>Deep Learning</topic><topic>Disease - classification</topic><topic>Emergency medical care</topic><topic>Emergency Service, Hospital</topic><topic>Heart</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Patients - classification</topic><topic>Radiography, Thoracic</topic><topic>Respiratory distress syndrome</topic><topic>Respiratory Distress Syndrome - diagnostic imaging</topic><topic>Respiratory Distress Syndrome - etiology</topic><topic>Retrospective Studies</topic><topic>Science</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Transfer learning</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stubblefield, Jonathan</creatorcontrib><creatorcontrib>Hervert, Mitchell</creatorcontrib><creatorcontrib>Causey, Jason L.</creatorcontrib><creatorcontrib>Qualls, Jake A.</creatorcontrib><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Cai, Lingrui</creatorcontrib><creatorcontrib>Fowler, Jennifer</creatorcontrib><creatorcontrib>Bellis, Emily</creatorcontrib><creatorcontrib>Walker, Karl</creatorcontrib><creatorcontrib>Moore, Jason H.</creatorcontrib><creatorcontrib>Nehring, Sara</creatorcontrib><creatorcontrib>Huang, Xiuzhen</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stubblefield, Jonathan</au><au>Hervert, Mitchell</au><au>Causey, Jason L.</au><au>Qualls, Jake A.</au><au>Dong, Wei</au><au>Cai, Lingrui</au><au>Fowler, Jennifer</au><au>Bellis, Emily</au><au>Walker, Karl</au><au>Moore, Jason H.</au><au>Nehring, Sara</au><au>Huang, Xiuzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer learning with chest X-rays for ER patient classification</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><addtitle>Sci Rep</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>20900</spage><epage>20900</epage><pages>20900-20900</pages><artnum>20900</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>One of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We conducted a retrospective study with the collected data of 171 ER patients. ER patient classification for cardiac and infection causes was evaluated with clinical data and chest X-ray image data. We show that a deep-learning model trained with an external image data set can be used to extract image features and improve the classification accuracy of a data set that does not contain enough image data to train a deep-learning model. An analysis of clinical feature importance was performed to identify the most important clinical features for ER patient classification. The current model is publicly available with an interface at the web link: http://nbttranslationalresearch.org/ .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33262425</pmid><doi>10.1038/s41598-020-78060-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5015-1099</orcidid><orcidid>https://orcid.org/0000-0001-5132-8872</orcidid><orcidid>https://orcid.org/0000-0002-3985-2919</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-12, Vol.10 (1), p.20900-20900, Article 20900
issn 2045-2322
2045-2322
language eng
recordid cdi_proquest_journals_2473270746
source Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 631/114
639/705
692/308
692/699
Chest
Classification
Deep Learning
Disease - classification
Emergency medical care
Emergency Service, Hospital
Heart
Humanities and Social Sciences
Humans
multidisciplinary
Multidisciplinary Sciences
Patients - classification
Radiography, Thoracic
Respiratory distress syndrome
Respiratory Distress Syndrome - diagnostic imaging
Respiratory Distress Syndrome - etiology
Retrospective Studies
Science
Science & Technology
Science & Technology - Other Topics
Science (multidisciplinary)
Transfer learning
X-rays
title Transfer learning with chest X-rays for ER patient classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T15%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20learning%20with%20chest%20X-rays%20for%20ER%20patient%20classification&rft.jtitle=Scientific%20reports&rft.au=Stubblefield,%20Jonathan&rft.date=2020-12-01&rft.volume=10&rft.issue=1&rft.spage=20900&rft.epage=20900&rft.pages=20900-20900&rft.artnum=20900&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-78060-4&rft_dat=%3Cproquest_webof%3E2473270746%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473270746&rft_id=info:pmid/33262425&rfr_iscdi=true