Transfer learning with chest X-rays for ER patient classification
One of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We conducted a retrospective study with the collected data of 171 ER patients....
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-12, Vol.10 (1), p.20900-20900, Article 20900 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20900 |
---|---|
container_issue | 1 |
container_start_page | 20900 |
container_title | Scientific reports |
container_volume | 10 |
creator | Stubblefield, Jonathan Hervert, Mitchell Causey, Jason L. Qualls, Jake A. Dong, Wei Cai, Lingrui Fowler, Jennifer Bellis, Emily Walker, Karl Moore, Jason H. Nehring, Sara Huang, Xiuzhen |
description | One of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We conducted a retrospective study with the collected data of 171 ER patients. ER patient classification for cardiac and infection causes was evaluated with clinical data and chest X-ray image data. We show that a deep-learning model trained with an external image data set can be used to extract image features and improve the classification accuracy of a data set that does not contain enough image data to train a deep-learning model. An analysis of clinical feature importance was performed to identify the most important clinical features for ER patient classification. The current model is publicly available with an interface at the web link:
http://nbttranslationalresearch.org/
. |
doi_str_mv | 10.1038/s41598-020-78060-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2473270746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473270746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1e65c3b9e39706df3e11d9f8c7d2fb5aa0f4ce944cbb08a77002bd8bb9dca98d3</originalsourceid><addsrcrecordid>eNqNkV1rFDEYhYMottT-AS9kwBtBpuZrJsmNUJaqhYIgFbwLSSbZTZlN1mTG0n_vu526Vi_E3CQhzzm8JwehlwSfEczku8pJp2SLKW6FxD1u-RN0TDHvWsooffrofIROa73BsDqqOFHP0RFjtKecdsfo_LqYVIMvzehNSTGtm9s4bRq38XVqvrXF3NUm5NJcfGl2Zoo-TY0bTa0xRAf3nF6gZ8GM1Z8-7Cfo64eL69Wn9urzx8vV-VXruOBTS3zfOWaVZ0rgfgjMEzKoIJ0YaLCdMThw5xXnzlosjRAYUztIa9XgjJIDO0HvF9_dbLd-cDBJMaPelbg15U5nE_WfLylu9Dr_0GAled-DwZsHg5K_zxBPb2N1fhxN8nmumu4hjInoAH39F3qT55IgHlCCUYEF3xvShXIl11p8OAxDsN6XpJeSNJSk70vSHESvHsc4SH5VAsDbBbj1Nofq4MudP2DQYo-lEh2HE6FAy_-nV3G6r2yV5zSBlC3SCnha-_I75D_m_wlAO74k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473270746</pqid></control><display><type>article</type><title>Transfer learning with chest X-rays for ER patient classification</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Stubblefield, Jonathan ; Hervert, Mitchell ; Causey, Jason L. ; Qualls, Jake A. ; Dong, Wei ; Cai, Lingrui ; Fowler, Jennifer ; Bellis, Emily ; Walker, Karl ; Moore, Jason H. ; Nehring, Sara ; Huang, Xiuzhen</creator><creatorcontrib>Stubblefield, Jonathan ; Hervert, Mitchell ; Causey, Jason L. ; Qualls, Jake A. ; Dong, Wei ; Cai, Lingrui ; Fowler, Jennifer ; Bellis, Emily ; Walker, Karl ; Moore, Jason H. ; Nehring, Sara ; Huang, Xiuzhen</creatorcontrib><description>One of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We conducted a retrospective study with the collected data of 171 ER patients. ER patient classification for cardiac and infection causes was evaluated with clinical data and chest X-ray image data. We show that a deep-learning model trained with an external image data set can be used to extract image features and improve the classification accuracy of a data set that does not contain enough image data to train a deep-learning model. An analysis of clinical feature importance was performed to identify the most important clinical features for ER patient classification. The current model is publicly available with an interface at the web link:
http://nbttranslationalresearch.org/
.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-78060-4</identifier><identifier>PMID: 33262425</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 639/705 ; 692/308 ; 692/699 ; Chest ; Classification ; Deep Learning ; Disease - classification ; Emergency medical care ; Emergency Service, Hospital ; Heart ; Humanities and Social Sciences ; Humans ; multidisciplinary ; Multidisciplinary Sciences ; Patients - classification ; Radiography, Thoracic ; Respiratory distress syndrome ; Respiratory Distress Syndrome - diagnostic imaging ; Respiratory Distress Syndrome - etiology ; Retrospective Studies ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Transfer learning ; X-rays</subject><ispartof>Scientific reports, 2020-12, Vol.10 (1), p.20900-20900, Article 20900</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000608975400012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c474t-1e65c3b9e39706df3e11d9f8c7d2fb5aa0f4ce944cbb08a77002bd8bb9dca98d3</citedby><cites>FETCH-LOGICAL-c474t-1e65c3b9e39706df3e11d9f8c7d2fb5aa0f4ce944cbb08a77002bd8bb9dca98d3</cites><orcidid>0000-0002-5015-1099 ; 0000-0001-5132-8872 ; 0000-0002-3985-2919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708466/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708466/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2115,27929,27930,28253,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33262425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stubblefield, Jonathan</creatorcontrib><creatorcontrib>Hervert, Mitchell</creatorcontrib><creatorcontrib>Causey, Jason L.</creatorcontrib><creatorcontrib>Qualls, Jake A.</creatorcontrib><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Cai, Lingrui</creatorcontrib><creatorcontrib>Fowler, Jennifer</creatorcontrib><creatorcontrib>Bellis, Emily</creatorcontrib><creatorcontrib>Walker, Karl</creatorcontrib><creatorcontrib>Moore, Jason H.</creatorcontrib><creatorcontrib>Nehring, Sara</creatorcontrib><creatorcontrib>Huang, Xiuzhen</creatorcontrib><title>Transfer learning with chest X-rays for ER patient classification</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><addtitle>Sci Rep</addtitle><description>One of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We conducted a retrospective study with the collected data of 171 ER patients. ER patient classification for cardiac and infection causes was evaluated with clinical data and chest X-ray image data. We show that a deep-learning model trained with an external image data set can be used to extract image features and improve the classification accuracy of a data set that does not contain enough image data to train a deep-learning model. An analysis of clinical feature importance was performed to identify the most important clinical features for ER patient classification. The current model is publicly available with an interface at the web link:
http://nbttranslationalresearch.org/
.</description><subject>631/114</subject><subject>639/705</subject><subject>692/308</subject><subject>692/699</subject><subject>Chest</subject><subject>Classification</subject><subject>Deep Learning</subject><subject>Disease - classification</subject><subject>Emergency medical care</subject><subject>Emergency Service, Hospital</subject><subject>Heart</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Patients - classification</subject><subject>Radiography, Thoracic</subject><subject>Respiratory distress syndrome</subject><subject>Respiratory Distress Syndrome - diagnostic imaging</subject><subject>Respiratory Distress Syndrome - etiology</subject><subject>Retrospective Studies</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Transfer learning</subject><subject>X-rays</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV1rFDEYhYMottT-AS9kwBtBpuZrJsmNUJaqhYIgFbwLSSbZTZlN1mTG0n_vu526Vi_E3CQhzzm8JwehlwSfEczku8pJp2SLKW6FxD1u-RN0TDHvWsooffrofIROa73BsDqqOFHP0RFjtKecdsfo_LqYVIMvzehNSTGtm9s4bRq38XVqvrXF3NUm5NJcfGl2Zoo-TY0bTa0xRAf3nF6gZ8GM1Z8-7Cfo64eL69Wn9urzx8vV-VXruOBTS3zfOWaVZ0rgfgjMEzKoIJ0YaLCdMThw5xXnzlosjRAYUztIa9XgjJIDO0HvF9_dbLd-cDBJMaPelbg15U5nE_WfLylu9Dr_0GAled-DwZsHg5K_zxBPb2N1fhxN8nmumu4hjInoAH39F3qT55IgHlCCUYEF3xvShXIl11p8OAxDsN6XpJeSNJSk70vSHESvHsc4SH5VAsDbBbj1Nofq4MudP2DQYo-lEh2HE6FAy_-nV3G6r2yV5zSBlC3SCnha-_I75D_m_wlAO74k</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Stubblefield, Jonathan</creator><creator>Hervert, Mitchell</creator><creator>Causey, Jason L.</creator><creator>Qualls, Jake A.</creator><creator>Dong, Wei</creator><creator>Cai, Lingrui</creator><creator>Fowler, Jennifer</creator><creator>Bellis, Emily</creator><creator>Walker, Karl</creator><creator>Moore, Jason H.</creator><creator>Nehring, Sara</creator><creator>Huang, Xiuzhen</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5015-1099</orcidid><orcidid>https://orcid.org/0000-0001-5132-8872</orcidid><orcidid>https://orcid.org/0000-0002-3985-2919</orcidid></search><sort><creationdate>20201201</creationdate><title>Transfer learning with chest X-rays for ER patient classification</title><author>Stubblefield, Jonathan ; Hervert, Mitchell ; Causey, Jason L. ; Qualls, Jake A. ; Dong, Wei ; Cai, Lingrui ; Fowler, Jennifer ; Bellis, Emily ; Walker, Karl ; Moore, Jason H. ; Nehring, Sara ; Huang, Xiuzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1e65c3b9e39706df3e11d9f8c7d2fb5aa0f4ce944cbb08a77002bd8bb9dca98d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114</topic><topic>639/705</topic><topic>692/308</topic><topic>692/699</topic><topic>Chest</topic><topic>Classification</topic><topic>Deep Learning</topic><topic>Disease - classification</topic><topic>Emergency medical care</topic><topic>Emergency Service, Hospital</topic><topic>Heart</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Patients - classification</topic><topic>Radiography, Thoracic</topic><topic>Respiratory distress syndrome</topic><topic>Respiratory Distress Syndrome - diagnostic imaging</topic><topic>Respiratory Distress Syndrome - etiology</topic><topic>Retrospective Studies</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Transfer learning</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stubblefield, Jonathan</creatorcontrib><creatorcontrib>Hervert, Mitchell</creatorcontrib><creatorcontrib>Causey, Jason L.</creatorcontrib><creatorcontrib>Qualls, Jake A.</creatorcontrib><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Cai, Lingrui</creatorcontrib><creatorcontrib>Fowler, Jennifer</creatorcontrib><creatorcontrib>Bellis, Emily</creatorcontrib><creatorcontrib>Walker, Karl</creatorcontrib><creatorcontrib>Moore, Jason H.</creatorcontrib><creatorcontrib>Nehring, Sara</creatorcontrib><creatorcontrib>Huang, Xiuzhen</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stubblefield, Jonathan</au><au>Hervert, Mitchell</au><au>Causey, Jason L.</au><au>Qualls, Jake A.</au><au>Dong, Wei</au><au>Cai, Lingrui</au><au>Fowler, Jennifer</au><au>Bellis, Emily</au><au>Walker, Karl</au><au>Moore, Jason H.</au><au>Nehring, Sara</au><au>Huang, Xiuzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer learning with chest X-rays for ER patient classification</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><addtitle>Sci Rep</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>20900</spage><epage>20900</epage><pages>20900-20900</pages><artnum>20900</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>One of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We conducted a retrospective study with the collected data of 171 ER patients. ER patient classification for cardiac and infection causes was evaluated with clinical data and chest X-ray image data. We show that a deep-learning model trained with an external image data set can be used to extract image features and improve the classification accuracy of a data set that does not contain enough image data to train a deep-learning model. An analysis of clinical feature importance was performed to identify the most important clinical features for ER patient classification. The current model is publicly available with an interface at the web link:
http://nbttranslationalresearch.org/
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33262425</pmid><doi>10.1038/s41598-020-78060-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5015-1099</orcidid><orcidid>https://orcid.org/0000-0001-5132-8872</orcidid><orcidid>https://orcid.org/0000-0002-3985-2919</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-12, Vol.10 (1), p.20900-20900, Article 20900 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_proquest_journals_2473270746 |
source | Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 631/114 639/705 692/308 692/699 Chest Classification Deep Learning Disease - classification Emergency medical care Emergency Service, Hospital Heart Humanities and Social Sciences Humans multidisciplinary Multidisciplinary Sciences Patients - classification Radiography, Thoracic Respiratory distress syndrome Respiratory Distress Syndrome - diagnostic imaging Respiratory Distress Syndrome - etiology Retrospective Studies Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Transfer learning X-rays |
title | Transfer learning with chest X-rays for ER patient classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T15%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20learning%20with%20chest%20X-rays%20for%20ER%20patient%20classification&rft.jtitle=Scientific%20reports&rft.au=Stubblefield,%20Jonathan&rft.date=2020-12-01&rft.volume=10&rft.issue=1&rft.spage=20900&rft.epage=20900&rft.pages=20900-20900&rft.artnum=20900&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-78060-4&rft_dat=%3Cproquest_webof%3E2473270746%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473270746&rft_id=info:pmid/33262425&rfr_iscdi=true |