Gravitational Search Algorithm for Calculating Exciton Binding Energy in Monolayer Transition Metal Dichalcogenides

Large excitonic binding energies in monolayers of transition metal dichalcogenides such as molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ) and tungsten diselenide (WSe 2 ), were calculated using a gravitational search algorithm. The optimized fitness functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2021, Vol.50 (1), p.163-169
Hauptverfasser: Oloore, Luqman E., Owolabi, Taoreed O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 169
container_issue 1
container_start_page 163
container_title Journal of electronic materials
container_volume 50
creator Oloore, Luqman E.
Owolabi, Taoreed O.
description Large excitonic binding energies in monolayers of transition metal dichalcogenides such as molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ) and tungsten diselenide (WSe 2 ), were calculated using a gravitational search algorithm. The optimized fitness function is based on a two dimensional (2D) effective mass model of excitons, parameterized by first principle calculations, including a suitable treatment of screening. In addition to the ground state, the binding energies of the first few excited states of the exciton were computed, hence the optical transition energies, as a function of principal quantum number n, were obtained for the exciton states. The method was also used to predict the corresponding 2D polarizabilities, and consequently, dielectric constants for the 2D semiconductors. Dependence of the effective dielectric constants on n was also investigated. Our results compare favorably with existing theoretical methods based on density function theory or GW approximation and the Bethe–Salpeter equation. Furthermore, our results are in reasonable agreement with recent experimental measurements.
doi_str_mv 10.1007/s11664-020-08585-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473267006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473267006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-349b10c5bbdff85331e20e083a5d74aa911eb4090fc73ae65e4b0a5eacccb4263</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4CrgOnozSeZnWWutQosLK7gLmUxmmjJNajKV9u2dtoI7V-HC-Q7kIHRL4Z4CZA-R0jTlBBIgkItckN0ZGlDBGaF5-nmOBsBSSkTCxCW6inEFQAXN6QDFaVDftlOd9U61-N2ooJd41DY-2G65xrUPeKxavW17xDV4stO28w4_Wlcdb2dCs8fW4bl3vlV7E_AiKBftwYjnpuutT1Yve4dvjLOVidfoolZtNDe_7xB9PE8W4xcye5u-jkczohktOsJ4UVLQoiyrus4FY9QkYCBnSlQZV6qg1JQcCqh1xpRJheElKGGU1rrkScqG6O7k3QT_tTWxkyu_Df03o0x4xpI0AzhQyYnSwccYTC03wa5V2EsK8hBXnuLKPq48xpW7fsROo9jDrjHhT_3P6gfFeH_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473267006</pqid></control><display><type>article</type><title>Gravitational Search Algorithm for Calculating Exciton Binding Energy in Monolayer Transition Metal Dichalcogenides</title><source>Springer Nature - Complete Springer Journals</source><creator>Oloore, Luqman E. ; Owolabi, Taoreed O.</creator><creatorcontrib>Oloore, Luqman E. ; Owolabi, Taoreed O.</creatorcontrib><description>Large excitonic binding energies in monolayers of transition metal dichalcogenides such as molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ) and tungsten diselenide (WSe 2 ), were calculated using a gravitational search algorithm. The optimized fitness function is based on a two dimensional (2D) effective mass model of excitons, parameterized by first principle calculations, including a suitable treatment of screening. In addition to the ground state, the binding energies of the first few excited states of the exciton were computed, hence the optical transition energies, as a function of principal quantum number n, were obtained for the exciton states. The method was also used to predict the corresponding 2D polarizabilities, and consequently, dielectric constants for the 2D semiconductors. Dependence of the effective dielectric constants on n was also investigated. Our results compare favorably with existing theoretical methods based on density function theory or GW approximation and the Bethe–Salpeter equation. Furthermore, our results are in reasonable agreement with recent experimental measurements.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08585-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bethe-Salpeter equation ; Binding energy ; Chalcogenides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Constants ; Density functional theory ; Electronics and Microelectronics ; Excitons ; First principles ; Gravitation ; Instrumentation ; Materials Science ; Molybdenum ; Molybdenum compounds ; Molybdenum disulfide ; Monolayers ; Optical and Electronic Materials ; Optical transition ; Original Research Article ; Permittivity ; Search algorithms ; Selenides ; Solid State Physics ; Transition metal compounds ; Tungsten compounds ; Tungsten disulfide ; Two dimensional models</subject><ispartof>Journal of electronic materials, 2021, Vol.50 (1), p.163-169</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>The Minerals, Metals &amp; Materials Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-349b10c5bbdff85331e20e083a5d74aa911eb4090fc73ae65e4b0a5eacccb4263</citedby><cites>FETCH-LOGICAL-c319t-349b10c5bbdff85331e20e083a5d74aa911eb4090fc73ae65e4b0a5eacccb4263</cites><orcidid>0000-0002-6666-1755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-020-08585-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-020-08585-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Oloore, Luqman E.</creatorcontrib><creatorcontrib>Owolabi, Taoreed O.</creatorcontrib><title>Gravitational Search Algorithm for Calculating Exciton Binding Energy in Monolayer Transition Metal Dichalcogenides</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Large excitonic binding energies in monolayers of transition metal dichalcogenides such as molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ) and tungsten diselenide (WSe 2 ), were calculated using a gravitational search algorithm. The optimized fitness function is based on a two dimensional (2D) effective mass model of excitons, parameterized by first principle calculations, including a suitable treatment of screening. In addition to the ground state, the binding energies of the first few excited states of the exciton were computed, hence the optical transition energies, as a function of principal quantum number n, were obtained for the exciton states. The method was also used to predict the corresponding 2D polarizabilities, and consequently, dielectric constants for the 2D semiconductors. Dependence of the effective dielectric constants on n was also investigated. Our results compare favorably with existing theoretical methods based on density function theory or GW approximation and the Bethe–Salpeter equation. Furthermore, our results are in reasonable agreement with recent experimental measurements.</description><subject>Bethe-Salpeter equation</subject><subject>Binding energy</subject><subject>Chalcogenides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Constants</subject><subject>Density functional theory</subject><subject>Electronics and Microelectronics</subject><subject>Excitons</subject><subject>First principles</subject><subject>Gravitation</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Molybdenum</subject><subject>Molybdenum compounds</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>Optical and Electronic Materials</subject><subject>Optical transition</subject><subject>Original Research Article</subject><subject>Permittivity</subject><subject>Search algorithms</subject><subject>Selenides</subject><subject>Solid State Physics</subject><subject>Transition metal compounds</subject><subject>Tungsten compounds</subject><subject>Tungsten disulfide</subject><subject>Two dimensional models</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1KAzEURoMoWKsv4CrgOnozSeZnWWutQosLK7gLmUxmmjJNajKV9u2dtoI7V-HC-Q7kIHRL4Z4CZA-R0jTlBBIgkItckN0ZGlDBGaF5-nmOBsBSSkTCxCW6inEFQAXN6QDFaVDftlOd9U61-N2ooJd41DY-2G65xrUPeKxavW17xDV4stO28w4_Wlcdb2dCs8fW4bl3vlV7E_AiKBftwYjnpuutT1Yve4dvjLOVidfoolZtNDe_7xB9PE8W4xcye5u-jkczohktOsJ4UVLQoiyrus4FY9QkYCBnSlQZV6qg1JQcCqh1xpRJheElKGGU1rrkScqG6O7k3QT_tTWxkyu_Df03o0x4xpI0AzhQyYnSwccYTC03wa5V2EsK8hBXnuLKPq48xpW7fsROo9jDrjHhT_3P6gfFeH_A</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Oloore, Luqman E.</creator><creator>Owolabi, Taoreed O.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-6666-1755</orcidid></search><sort><creationdate>2021</creationdate><title>Gravitational Search Algorithm for Calculating Exciton Binding Energy in Monolayer Transition Metal Dichalcogenides</title><author>Oloore, Luqman E. ; Owolabi, Taoreed O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-349b10c5bbdff85331e20e083a5d74aa911eb4090fc73ae65e4b0a5eacccb4263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bethe-Salpeter equation</topic><topic>Binding energy</topic><topic>Chalcogenides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Constants</topic><topic>Density functional theory</topic><topic>Electronics and Microelectronics</topic><topic>Excitons</topic><topic>First principles</topic><topic>Gravitation</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Molybdenum</topic><topic>Molybdenum compounds</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>Optical and Electronic Materials</topic><topic>Optical transition</topic><topic>Original Research Article</topic><topic>Permittivity</topic><topic>Search algorithms</topic><topic>Selenides</topic><topic>Solid State Physics</topic><topic>Transition metal compounds</topic><topic>Tungsten compounds</topic><topic>Tungsten disulfide</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oloore, Luqman E.</creatorcontrib><creatorcontrib>Owolabi, Taoreed O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oloore, Luqman E.</au><au>Owolabi, Taoreed O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravitational Search Algorithm for Calculating Exciton Binding Energy in Monolayer Transition Metal Dichalcogenides</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021</date><risdate>2021</risdate><volume>50</volume><issue>1</issue><spage>163</spage><epage>169</epage><pages>163-169</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Large excitonic binding energies in monolayers of transition metal dichalcogenides such as molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ) and tungsten diselenide (WSe 2 ), were calculated using a gravitational search algorithm. The optimized fitness function is based on a two dimensional (2D) effective mass model of excitons, parameterized by first principle calculations, including a suitable treatment of screening. In addition to the ground state, the binding energies of the first few excited states of the exciton were computed, hence the optical transition energies, as a function of principal quantum number n, were obtained for the exciton states. The method was also used to predict the corresponding 2D polarizabilities, and consequently, dielectric constants for the 2D semiconductors. Dependence of the effective dielectric constants on n was also investigated. Our results compare favorably with existing theoretical methods based on density function theory or GW approximation and the Bethe–Salpeter equation. Furthermore, our results are in reasonable agreement with recent experimental measurements.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08585-x</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6666-1755</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2021, Vol.50 (1), p.163-169
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2473267006
source Springer Nature - Complete Springer Journals
subjects Bethe-Salpeter equation
Binding energy
Chalcogenides
Characterization and Evaluation of Materials
Chemistry and Materials Science
Constants
Density functional theory
Electronics and Microelectronics
Excitons
First principles
Gravitation
Instrumentation
Materials Science
Molybdenum
Molybdenum compounds
Molybdenum disulfide
Monolayers
Optical and Electronic Materials
Optical transition
Original Research Article
Permittivity
Search algorithms
Selenides
Solid State Physics
Transition metal compounds
Tungsten compounds
Tungsten disulfide
Two dimensional models
title Gravitational Search Algorithm for Calculating Exciton Binding Energy in Monolayer Transition Metal Dichalcogenides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravitational%20Search%20Algorithm%20for%20Calculating%20Exciton%20Binding%20Energy%20in%20Monolayer%20Transition%20Metal%20Dichalcogenides&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Oloore,%20Luqman%20E.&rft.date=2021&rft.volume=50&rft.issue=1&rft.spage=163&rft.epage=169&rft.pages=163-169&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08585-x&rft_dat=%3Cproquest_cross%3E2473267006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473267006&rft_id=info:pmid/&rfr_iscdi=true