Gravitational Search Algorithm for Calculating Exciton Binding Energy in Monolayer Transition Metal Dichalcogenides
Large excitonic binding energies in monolayers of transition metal dichalcogenides such as molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ) and tungsten diselenide (WSe 2 ), were calculated using a gravitational search algorithm. The optimized fitness functi...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2021, Vol.50 (1), p.163-169 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 169 |
---|---|
container_issue | 1 |
container_start_page | 163 |
container_title | Journal of electronic materials |
container_volume | 50 |
creator | Oloore, Luqman E. Owolabi, Taoreed O. |
description | Large excitonic binding energies in monolayers of transition metal dichalcogenides such as molybdenum disulfide (MoS
2
), molybdenum diselenide (MoSe
2
), tungsten disulfide (WS
2
) and tungsten diselenide (WSe
2
), were calculated using a gravitational search algorithm. The optimized fitness function is based on a two dimensional (2D) effective mass model of excitons, parameterized by first principle calculations, including a suitable treatment of screening. In addition to the ground state, the binding energies of the first few excited states of the exciton were computed, hence the optical transition energies, as a function of principal quantum number
n,
were obtained for the exciton states. The method was also used to predict the corresponding 2D polarizabilities, and consequently, dielectric constants for the 2D semiconductors. Dependence of the effective dielectric constants on
n
was also investigated. Our results compare favorably with existing theoretical methods based on density function theory or GW approximation and the Bethe–Salpeter equation. Furthermore, our results are in reasonable agreement with recent experimental measurements. |
doi_str_mv | 10.1007/s11664-020-08585-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473267006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473267006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-349b10c5bbdff85331e20e083a5d74aa911eb4090fc73ae65e4b0a5eacccb4263</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4CrgOnozSeZnWWutQosLK7gLmUxmmjJNajKV9u2dtoI7V-HC-Q7kIHRL4Z4CZA-R0jTlBBIgkItckN0ZGlDBGaF5-nmOBsBSSkTCxCW6inEFQAXN6QDFaVDftlOd9U61-N2ooJd41DY-2G65xrUPeKxavW17xDV4stO28w4_Wlcdb2dCs8fW4bl3vlV7E_AiKBftwYjnpuutT1Yve4dvjLOVidfoolZtNDe_7xB9PE8W4xcye5u-jkczohktOsJ4UVLQoiyrus4FY9QkYCBnSlQZV6qg1JQcCqh1xpRJheElKGGU1rrkScqG6O7k3QT_tTWxkyu_Df03o0x4xpI0AzhQyYnSwccYTC03wa5V2EsK8hBXnuLKPq48xpW7fsROo9jDrjHhT_3P6gfFeH_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473267006</pqid></control><display><type>article</type><title>Gravitational Search Algorithm for Calculating Exciton Binding Energy in Monolayer Transition Metal Dichalcogenides</title><source>Springer Nature - Complete Springer Journals</source><creator>Oloore, Luqman E. ; Owolabi, Taoreed O.</creator><creatorcontrib>Oloore, Luqman E. ; Owolabi, Taoreed O.</creatorcontrib><description>Large excitonic binding energies in monolayers of transition metal dichalcogenides such as molybdenum disulfide (MoS
2
), molybdenum diselenide (MoSe
2
), tungsten disulfide (WS
2
) and tungsten diselenide (WSe
2
), were calculated using a gravitational search algorithm. The optimized fitness function is based on a two dimensional (2D) effective mass model of excitons, parameterized by first principle calculations, including a suitable treatment of screening. In addition to the ground state, the binding energies of the first few excited states of the exciton were computed, hence the optical transition energies, as a function of principal quantum number
n,
were obtained for the exciton states. The method was also used to predict the corresponding 2D polarizabilities, and consequently, dielectric constants for the 2D semiconductors. Dependence of the effective dielectric constants on
n
was also investigated. Our results compare favorably with existing theoretical methods based on density function theory or GW approximation and the Bethe–Salpeter equation. Furthermore, our results are in reasonable agreement with recent experimental measurements.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08585-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bethe-Salpeter equation ; Binding energy ; Chalcogenides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Constants ; Density functional theory ; Electronics and Microelectronics ; Excitons ; First principles ; Gravitation ; Instrumentation ; Materials Science ; Molybdenum ; Molybdenum compounds ; Molybdenum disulfide ; Monolayers ; Optical and Electronic Materials ; Optical transition ; Original Research Article ; Permittivity ; Search algorithms ; Selenides ; Solid State Physics ; Transition metal compounds ; Tungsten compounds ; Tungsten disulfide ; Two dimensional models</subject><ispartof>Journal of electronic materials, 2021, Vol.50 (1), p.163-169</ispartof><rights>The Minerals, Metals & Materials Society 2020</rights><rights>The Minerals, Metals & Materials Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-349b10c5bbdff85331e20e083a5d74aa911eb4090fc73ae65e4b0a5eacccb4263</citedby><cites>FETCH-LOGICAL-c319t-349b10c5bbdff85331e20e083a5d74aa911eb4090fc73ae65e4b0a5eacccb4263</cites><orcidid>0000-0002-6666-1755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-020-08585-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-020-08585-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Oloore, Luqman E.</creatorcontrib><creatorcontrib>Owolabi, Taoreed O.</creatorcontrib><title>Gravitational Search Algorithm for Calculating Exciton Binding Energy in Monolayer Transition Metal Dichalcogenides</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Large excitonic binding energies in monolayers of transition metal dichalcogenides such as molybdenum disulfide (MoS
2
), molybdenum diselenide (MoSe
2
), tungsten disulfide (WS
2
) and tungsten diselenide (WSe
2
), were calculated using a gravitational search algorithm. The optimized fitness function is based on a two dimensional (2D) effective mass model of excitons, parameterized by first principle calculations, including a suitable treatment of screening. In addition to the ground state, the binding energies of the first few excited states of the exciton were computed, hence the optical transition energies, as a function of principal quantum number
n,
were obtained for the exciton states. The method was also used to predict the corresponding 2D polarizabilities, and consequently, dielectric constants for the 2D semiconductors. Dependence of the effective dielectric constants on
n
was also investigated. Our results compare favorably with existing theoretical methods based on density function theory or GW approximation and the Bethe–Salpeter equation. Furthermore, our results are in reasonable agreement with recent experimental measurements.</description><subject>Bethe-Salpeter equation</subject><subject>Binding energy</subject><subject>Chalcogenides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Constants</subject><subject>Density functional theory</subject><subject>Electronics and Microelectronics</subject><subject>Excitons</subject><subject>First principles</subject><subject>Gravitation</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Molybdenum</subject><subject>Molybdenum compounds</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>Optical and Electronic Materials</subject><subject>Optical transition</subject><subject>Original Research Article</subject><subject>Permittivity</subject><subject>Search algorithms</subject><subject>Selenides</subject><subject>Solid State Physics</subject><subject>Transition metal compounds</subject><subject>Tungsten compounds</subject><subject>Tungsten disulfide</subject><subject>Two dimensional models</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1KAzEURoMoWKsv4CrgOnozSeZnWWutQosLK7gLmUxmmjJNajKV9u2dtoI7V-HC-Q7kIHRL4Z4CZA-R0jTlBBIgkItckN0ZGlDBGaF5-nmOBsBSSkTCxCW6inEFQAXN6QDFaVDftlOd9U61-N2ooJd41DY-2G65xrUPeKxavW17xDV4stO28w4_Wlcdb2dCs8fW4bl3vlV7E_AiKBftwYjnpuutT1Yve4dvjLOVidfoolZtNDe_7xB9PE8W4xcye5u-jkczohktOsJ4UVLQoiyrus4FY9QkYCBnSlQZV6qg1JQcCqh1xpRJheElKGGU1rrkScqG6O7k3QT_tTWxkyu_Df03o0x4xpI0AzhQyYnSwccYTC03wa5V2EsK8hBXnuLKPq48xpW7fsROo9jDrjHhT_3P6gfFeH_A</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Oloore, Luqman E.</creator><creator>Owolabi, Taoreed O.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-6666-1755</orcidid></search><sort><creationdate>2021</creationdate><title>Gravitational Search Algorithm for Calculating Exciton Binding Energy in Monolayer Transition Metal Dichalcogenides</title><author>Oloore, Luqman E. ; Owolabi, Taoreed O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-349b10c5bbdff85331e20e083a5d74aa911eb4090fc73ae65e4b0a5eacccb4263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bethe-Salpeter equation</topic><topic>Binding energy</topic><topic>Chalcogenides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Constants</topic><topic>Density functional theory</topic><topic>Electronics and Microelectronics</topic><topic>Excitons</topic><topic>First principles</topic><topic>Gravitation</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Molybdenum</topic><topic>Molybdenum compounds</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>Optical and Electronic Materials</topic><topic>Optical transition</topic><topic>Original Research Article</topic><topic>Permittivity</topic><topic>Search algorithms</topic><topic>Selenides</topic><topic>Solid State Physics</topic><topic>Transition metal compounds</topic><topic>Tungsten compounds</topic><topic>Tungsten disulfide</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oloore, Luqman E.</creatorcontrib><creatorcontrib>Owolabi, Taoreed O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oloore, Luqman E.</au><au>Owolabi, Taoreed O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravitational Search Algorithm for Calculating Exciton Binding Energy in Monolayer Transition Metal Dichalcogenides</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021</date><risdate>2021</risdate><volume>50</volume><issue>1</issue><spage>163</spage><epage>169</epage><pages>163-169</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Large excitonic binding energies in monolayers of transition metal dichalcogenides such as molybdenum disulfide (MoS
2
), molybdenum diselenide (MoSe
2
), tungsten disulfide (WS
2
) and tungsten diselenide (WSe
2
), were calculated using a gravitational search algorithm. The optimized fitness function is based on a two dimensional (2D) effective mass model of excitons, parameterized by first principle calculations, including a suitable treatment of screening. In addition to the ground state, the binding energies of the first few excited states of the exciton were computed, hence the optical transition energies, as a function of principal quantum number
n,
were obtained for the exciton states. The method was also used to predict the corresponding 2D polarizabilities, and consequently, dielectric constants for the 2D semiconductors. Dependence of the effective dielectric constants on
n
was also investigated. Our results compare favorably with existing theoretical methods based on density function theory or GW approximation and the Bethe–Salpeter equation. Furthermore, our results are in reasonable agreement with recent experimental measurements.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08585-x</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6666-1755</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2021, Vol.50 (1), p.163-169 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2473267006 |
source | Springer Nature - Complete Springer Journals |
subjects | Bethe-Salpeter equation Binding energy Chalcogenides Characterization and Evaluation of Materials Chemistry and Materials Science Constants Density functional theory Electronics and Microelectronics Excitons First principles Gravitation Instrumentation Materials Science Molybdenum Molybdenum compounds Molybdenum disulfide Monolayers Optical and Electronic Materials Optical transition Original Research Article Permittivity Search algorithms Selenides Solid State Physics Transition metal compounds Tungsten compounds Tungsten disulfide Two dimensional models |
title | Gravitational Search Algorithm for Calculating Exciton Binding Energy in Monolayer Transition Metal Dichalcogenides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravitational%20Search%20Algorithm%20for%20Calculating%20Exciton%20Binding%20Energy%20in%20Monolayer%20Transition%20Metal%20Dichalcogenides&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Oloore,%20Luqman%20E.&rft.date=2021&rft.volume=50&rft.issue=1&rft.spage=163&rft.epage=169&rft.pages=163-169&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08585-x&rft_dat=%3Cproquest_cross%3E2473267006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473267006&rft_id=info:pmid/&rfr_iscdi=true |