Electrochemical Properties of CMC–PVA Polymer Blend Electrolyte for Solid State Electric Double Layer Capacitors

In this work, the electrochemical properties of polymer blend electrolyte (PBE) based CMC-PVA is presented for electrical double layer capacitance (EDLC) application. CMC-PVA PBE is incorporated in two different systems which contain an (1) ammonium nitrate (NH 4 NO 3 ) ionic dopant (System I), and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2021, Vol.50 (1), p.303-313
Hauptverfasser: Saadiah, M. A., Kufian, M. Z., Misnon, I. I., Samsudin, A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 313
container_issue 1
container_start_page 303
container_title Journal of electronic materials
container_volume 50
creator Saadiah, M. A.
Kufian, M. Z.
Misnon, I. I.
Samsudin, A. S.
description In this work, the electrochemical properties of polymer blend electrolyte (PBE) based CMC-PVA is presented for electrical double layer capacitance (EDLC) application. CMC-PVA PBE is incorporated in two different systems which contain an (1) ammonium nitrate (NH 4 NO 3 ) ionic dopant (System I), and (2) ethylene carbonate (EC) plasticizer (System II). The ionic conductivity of PBE based on CMC (55 wt.%)–PVA (15 wt.%)–NH 4 NO 3 (30 wt.%) and CMC (53 wt.%)–PVA (13 wt.%)–NH 4 NO 3 (28 wt.%)–EC (6 wt.%) were optimized at room temperature with value of 1.70 × 10 −3  S/cm and 3.92 × 10 −3  S/cm, respectively. The ionic conduction for both systems shows Arrhenius behavior when tested at different temperatures. Electrochemical properties of the fabricated EDLC cell were analyzed for their electrochemical properties and System II showed higher specific capacitance than System I with values of 64.9 F/g and 89.1 F/g, respectively, based on a CV scan rate of 2 mV/s. Both fabricated EDLC show outstanding cycling stability over 10,000 cycles, which indicates that the present PBE based CMC–PVA has outstanding electrochemical performance and is a promising candidate for EDLC application.
doi_str_mv 10.1007/s11664-020-08547-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473255662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473255662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d935d128e99ddcbf04fa3816ebfccc0f5e5fa27d66b07dadbb7fc451fe819dac3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOprLJDOzrGO9QMVCVdyFTC46JW1qMl3MznfwDX0SR6fgztXhcP7vP_ABcErwOcE4v0iECJEhTDHCBc9yxPbAiPCMIVKIl30wwkwQxCnjh-AopSXGhJOCjECceqvbGPSbXTVaeTiPYWNj29gEg4PVffX18Tl_nsB58N3KRnjp7drAHeW71kIXIlwE3xi4aFW_D7dGw6uwrb2FM9X1XKU2SjdtiOkYHDjlkz3ZzTF4up4-Vrdo9nBzV01mSDNStsiUjBtCC1uWxuja4cwpVhBha6e1xo5b7hTNjRA1zo0ydZ07nXHibEFKozQbg7OhdxPD-9amVi7DNq77l5JmOaOcC0H7FB1SOoaUonVyE5uVip0kWP64lYNb2buVv24l6yE2QKkPr19t_Kv-h_oGY4x_lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473255662</pqid></control><display><type>article</type><title>Electrochemical Properties of CMC–PVA Polymer Blend Electrolyte for Solid State Electric Double Layer Capacitors</title><source>SpringerNature Journals</source><creator>Saadiah, M. A. ; Kufian, M. Z. ; Misnon, I. I. ; Samsudin, A. S.</creator><creatorcontrib>Saadiah, M. A. ; Kufian, M. Z. ; Misnon, I. I. ; Samsudin, A. S.</creatorcontrib><description>In this work, the electrochemical properties of polymer blend electrolyte (PBE) based CMC-PVA is presented for electrical double layer capacitance (EDLC) application. CMC-PVA PBE is incorporated in two different systems which contain an (1) ammonium nitrate (NH 4 NO 3 ) ionic dopant (System I), and (2) ethylene carbonate (EC) plasticizer (System II). The ionic conductivity of PBE based on CMC (55 wt.%)–PVA (15 wt.%)–NH 4 NO 3 (30 wt.%) and CMC (53 wt.%)–PVA (13 wt.%)–NH 4 NO 3 (28 wt.%)–EC (6 wt.%) were optimized at room temperature with value of 1.70 × 10 −3  S/cm and 3.92 × 10 −3  S/cm, respectively. The ionic conduction for both systems shows Arrhenius behavior when tested at different temperatures. Electrochemical properties of the fabricated EDLC cell were analyzed for their electrochemical properties and System II showed higher specific capacitance than System I with values of 64.9 F/g and 89.1 F/g, respectively, based on a CV scan rate of 2 mV/s. Both fabricated EDLC show outstanding cycling stability over 10,000 cycles, which indicates that the present PBE based CMC–PVA has outstanding electrochemical performance and is a promising candidate for EDLC application.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08547-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ammonium nitrate ; Capacitance ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electric double layer ; Electrical resistivity ; Electrochemical analysis ; Electrolytes ; Electronics and Microelectronics ; Instrumentation ; Ion currents ; Materials Science ; Optical and Electronic Materials ; Original Research ; Polymer blends ; Polymers ; Properties (attributes) ; Room temperature ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2021, Vol.50 (1), p.303-313</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>The Minerals, Metals &amp; Materials Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d935d128e99ddcbf04fa3816ebfccc0f5e5fa27d66b07dadbb7fc451fe819dac3</citedby><cites>FETCH-LOGICAL-c319t-d935d128e99ddcbf04fa3816ebfccc0f5e5fa27d66b07dadbb7fc451fe819dac3</cites><orcidid>0000-0001-7472-2530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-020-08547-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-020-08547-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Saadiah, M. A.</creatorcontrib><creatorcontrib>Kufian, M. Z.</creatorcontrib><creatorcontrib>Misnon, I. I.</creatorcontrib><creatorcontrib>Samsudin, A. S.</creatorcontrib><title>Electrochemical Properties of CMC–PVA Polymer Blend Electrolyte for Solid State Electric Double Layer Capacitors</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>In this work, the electrochemical properties of polymer blend electrolyte (PBE) based CMC-PVA is presented for electrical double layer capacitance (EDLC) application. CMC-PVA PBE is incorporated in two different systems which contain an (1) ammonium nitrate (NH 4 NO 3 ) ionic dopant (System I), and (2) ethylene carbonate (EC) plasticizer (System II). The ionic conductivity of PBE based on CMC (55 wt.%)–PVA (15 wt.%)–NH 4 NO 3 (30 wt.%) and CMC (53 wt.%)–PVA (13 wt.%)–NH 4 NO 3 (28 wt.%)–EC (6 wt.%) were optimized at room temperature with value of 1.70 × 10 −3  S/cm and 3.92 × 10 −3  S/cm, respectively. The ionic conduction for both systems shows Arrhenius behavior when tested at different temperatures. Electrochemical properties of the fabricated EDLC cell were analyzed for their electrochemical properties and System II showed higher specific capacitance than System I with values of 64.9 F/g and 89.1 F/g, respectively, based on a CV scan rate of 2 mV/s. Both fabricated EDLC show outstanding cycling stability over 10,000 cycles, which indicates that the present PBE based CMC–PVA has outstanding electrochemical performance and is a promising candidate for EDLC application.</description><subject>Ammonium nitrate</subject><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electric double layer</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Ion currents</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Original Research</subject><subject>Polymer blends</subject><subject>Polymers</subject><subject>Properties (attributes)</subject><subject>Room temperature</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOprLJDOzrGO9QMVCVdyFTC46JW1qMl3MznfwDX0SR6fgztXhcP7vP_ABcErwOcE4v0iECJEhTDHCBc9yxPbAiPCMIVKIl30wwkwQxCnjh-AopSXGhJOCjECceqvbGPSbXTVaeTiPYWNj29gEg4PVffX18Tl_nsB58N3KRnjp7drAHeW71kIXIlwE3xi4aFW_D7dGw6uwrb2FM9X1XKU2SjdtiOkYHDjlkz3ZzTF4up4-Vrdo9nBzV01mSDNStsiUjBtCC1uWxuja4cwpVhBha6e1xo5b7hTNjRA1zo0ydZ07nXHibEFKozQbg7OhdxPD-9amVi7DNq77l5JmOaOcC0H7FB1SOoaUonVyE5uVip0kWP64lYNb2buVv24l6yE2QKkPr19t_Kv-h_oGY4x_lQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Saadiah, M. A.</creator><creator>Kufian, M. Z.</creator><creator>Misnon, I. I.</creator><creator>Samsudin, A. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-7472-2530</orcidid></search><sort><creationdate>2021</creationdate><title>Electrochemical Properties of CMC–PVA Polymer Blend Electrolyte for Solid State Electric Double Layer Capacitors</title><author>Saadiah, M. A. ; Kufian, M. Z. ; Misnon, I. I. ; Samsudin, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d935d128e99ddcbf04fa3816ebfccc0f5e5fa27d66b07dadbb7fc451fe819dac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonium nitrate</topic><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electric double layer</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Ion currents</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Original Research</topic><topic>Polymer blends</topic><topic>Polymers</topic><topic>Properties (attributes)</topic><topic>Room temperature</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saadiah, M. A.</creatorcontrib><creatorcontrib>Kufian, M. Z.</creatorcontrib><creatorcontrib>Misnon, I. I.</creatorcontrib><creatorcontrib>Samsudin, A. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saadiah, M. A.</au><au>Kufian, M. Z.</au><au>Misnon, I. I.</au><au>Samsudin, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Properties of CMC–PVA Polymer Blend Electrolyte for Solid State Electric Double Layer Capacitors</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021</date><risdate>2021</risdate><volume>50</volume><issue>1</issue><spage>303</spage><epage>313</epage><pages>303-313</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>In this work, the electrochemical properties of polymer blend electrolyte (PBE) based CMC-PVA is presented for electrical double layer capacitance (EDLC) application. CMC-PVA PBE is incorporated in two different systems which contain an (1) ammonium nitrate (NH 4 NO 3 ) ionic dopant (System I), and (2) ethylene carbonate (EC) plasticizer (System II). The ionic conductivity of PBE based on CMC (55 wt.%)–PVA (15 wt.%)–NH 4 NO 3 (30 wt.%) and CMC (53 wt.%)–PVA (13 wt.%)–NH 4 NO 3 (28 wt.%)–EC (6 wt.%) were optimized at room temperature with value of 1.70 × 10 −3  S/cm and 3.92 × 10 −3  S/cm, respectively. The ionic conduction for both systems shows Arrhenius behavior when tested at different temperatures. Electrochemical properties of the fabricated EDLC cell were analyzed for their electrochemical properties and System II showed higher specific capacitance than System I with values of 64.9 F/g and 89.1 F/g, respectively, based on a CV scan rate of 2 mV/s. Both fabricated EDLC show outstanding cycling stability over 10,000 cycles, which indicates that the present PBE based CMC–PVA has outstanding electrochemical performance and is a promising candidate for EDLC application.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08547-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7472-2530</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2021, Vol.50 (1), p.303-313
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2473255662
source SpringerNature Journals
subjects Ammonium nitrate
Capacitance
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electric double layer
Electrical resistivity
Electrochemical analysis
Electrolytes
Electronics and Microelectronics
Instrumentation
Ion currents
Materials Science
Optical and Electronic Materials
Original Research
Polymer blends
Polymers
Properties (attributes)
Room temperature
Solid State Physics
title Electrochemical Properties of CMC–PVA Polymer Blend Electrolyte for Solid State Electric Double Layer Capacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Properties%20of%20CMC%E2%80%93PVA%20Polymer%20Blend%20Electrolyte%20for%20Solid%20State%20Electric%20Double%20Layer%20Capacitors&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Saadiah,%20M.%20A.&rft.date=2021&rft.volume=50&rft.issue=1&rft.spage=303&rft.epage=313&rft.pages=303-313&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08547-3&rft_dat=%3Cproquest_cross%3E2473255662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473255662&rft_id=info:pmid/&rfr_iscdi=true