Scattering Observables from One- and Two-body Densities: Formalism and Application to γ3He Scattering

We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated once and stored. They are then convoluted with an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Few-body systems 2020-12, Vol.61 (4)
Hauptverfasser: Grießhammer, Harald W., McGovern, Judith A., Nogga, Andreas, Phillips, Daniel R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Few-body systems
container_volume 61
creator Grießhammer, Harald W.
McGovern, Judith A.
Nogga, Andreas
Phillips, Daniel R.
description We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated once and stored. They are then convoluted with an interaction kernel to produce amplitudes, and hence observables. By choosing different kernels, the same densities can be used for any reaction in which a probe interacts perturbatively with the target. The method therefore exploits the factorisation between nuclear structure and interaction kernel that occurs in such processes. We study in detail the convergence in the number of partial waves for matrix elements relevant in elastic Compton scattering on 3 He . The results are fully consistent with our previous calculations in Chiral Effective Field Theory. But the new approach is markedly more computationally efficient, which facilitates the inclusion of more partial-wave channels in the calculation. We also discuss the usefulness of the transition-density method for other nuclei and reactions. Calculations of elastic Compton scattering on heavier targets like 4 He are straightforward extensions of this study, since the same interaction kernels are used. And the generality of the formalism means that our 3 He densities can be used to evaluate any 3 He elastic-scattering observable with contributions from one- and two-body operators. They are available at https://datapub.fz-juelich.de/anogga .
doi_str_mv 10.1007/s00601-020-01578-w
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2473255393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473255393</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-9affd90c017bd101cebedcb69e9555bf74c15257afae67c95c43a7b885374a333</originalsourceid><addsrcrecordid>eNpFkMFKAzEURYMoWKs_4CrgOvoymUwad6VaKxRmYV2HJJPIlOlkTKYWv8v_8JuctkJXb3O473AQuqVwTwHEQwIogBLIgADlYkJ2Z2hEc5YRnlN6jkZAhSBCFuwSXaW0hoGSFEbIv1nd9y7W7QcuTXLxS5vGJexj2OCydQTrtsKrXSAmVN_4ybWp7muXHvE8xI1u6rQ5ENOua-phqg4t7gP-_WELh0_b1-jC6ya5m_87Ru_z59VsQZbly-tsuiTdYN0Tqb2vJNjB1lQUqHXGVdYU0knOufEit5RnXGivXSGs5DZnWpjJhDORa8bYGN0dd7sYPrcu9WodtrEdXqosFyzjnMk9xY5U6vZyLp4oCmofVB2DqiGoOgRVO_YH4eNqhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473255393</pqid></control><display><type>article</type><title>Scattering Observables from One- and Two-body Densities: Formalism and Application to γ3He Scattering</title><source>Springer Nature - Complete Springer Journals</source><creator>Grießhammer, Harald W. ; McGovern, Judith A. ; Nogga, Andreas ; Phillips, Daniel R.</creator><creatorcontrib>Grießhammer, Harald W. ; McGovern, Judith A. ; Nogga, Andreas ; Phillips, Daniel R.</creatorcontrib><description>We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated once and stored. They are then convoluted with an interaction kernel to produce amplitudes, and hence observables. By choosing different kernels, the same densities can be used for any reaction in which a probe interacts perturbatively with the target. The method therefore exploits the factorisation between nuclear structure and interaction kernel that occurs in such processes. We study in detail the convergence in the number of partial waves for matrix elements relevant in elastic Compton scattering on 3 He . The results are fully consistent with our previous calculations in Chiral Effective Field Theory. But the new approach is markedly more computationally efficient, which facilitates the inclusion of more partial-wave channels in the calculation. We also discuss the usefulness of the transition-density method for other nuclei and reactions. Calculations of elastic Compton scattering on heavier targets like 4 He are straightforward extensions of this study, since the same interaction kernels are used. And the generality of the formalism means that our 3 He densities can be used to evaluate any 3 He elastic-scattering observable with contributions from one- and two-body operators. They are available at https://datapub.fz-juelich.de/anogga .</description><identifier>ISSN: 0177-7963</identifier><identifier>EISSN: 1432-5411</identifier><identifier>DOI: 10.1007/s00601-020-01578-w</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Atomic ; Density ; Elastic scattering ; Field theory ; Formalism ; Hadrons ; Heavy Ions ; Kernels ; Mathematical analysis ; Molecular ; Nuclear Physics ; Nuclear structure ; Nuclei ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy</subject><ispartof>Few-body systems, 2020-12, Vol.61 (4)</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9953-6512 ; 0000-0003-2156-748X ; 0000-0001-8364-1724 ; 0000-0003-1596-9087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00601-020-01578-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00601-020-01578-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Grießhammer, Harald W.</creatorcontrib><creatorcontrib>McGovern, Judith A.</creatorcontrib><creatorcontrib>Nogga, Andreas</creatorcontrib><creatorcontrib>Phillips, Daniel R.</creatorcontrib><title>Scattering Observables from One- and Two-body Densities: Formalism and Application to γ3He Scattering</title><title>Few-body systems</title><addtitle>Few-Body Syst</addtitle><description>We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated once and stored. They are then convoluted with an interaction kernel to produce amplitudes, and hence observables. By choosing different kernels, the same densities can be used for any reaction in which a probe interacts perturbatively with the target. The method therefore exploits the factorisation between nuclear structure and interaction kernel that occurs in such processes. We study in detail the convergence in the number of partial waves for matrix elements relevant in elastic Compton scattering on 3 He . The results are fully consistent with our previous calculations in Chiral Effective Field Theory. But the new approach is markedly more computationally efficient, which facilitates the inclusion of more partial-wave channels in the calculation. We also discuss the usefulness of the transition-density method for other nuclei and reactions. Calculations of elastic Compton scattering on heavier targets like 4 He are straightforward extensions of this study, since the same interaction kernels are used. And the generality of the formalism means that our 3 He densities can be used to evaluate any 3 He elastic-scattering observable with contributions from one- and two-body operators. They are available at https://datapub.fz-juelich.de/anogga .</description><subject>Atomic</subject><subject>Density</subject><subject>Elastic scattering</subject><subject>Field theory</subject><subject>Formalism</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Molecular</subject><subject>Nuclear Physics</subject><subject>Nuclear structure</subject><subject>Nuclei</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0177-7963</issn><issn>1432-5411</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkMFKAzEURYMoWKs_4CrgOvoymUwad6VaKxRmYV2HJJPIlOlkTKYWv8v_8JuctkJXb3O473AQuqVwTwHEQwIogBLIgADlYkJ2Z2hEc5YRnlN6jkZAhSBCFuwSXaW0hoGSFEbIv1nd9y7W7QcuTXLxS5vGJexj2OCydQTrtsKrXSAmVN_4ybWp7muXHvE8xI1u6rQ5ENOua-phqg4t7gP-_WELh0_b1-jC6ya5m_87Ru_z59VsQZbly-tsuiTdYN0Tqb2vJNjB1lQUqHXGVdYU0knOufEit5RnXGivXSGs5DZnWpjJhDORa8bYGN0dd7sYPrcu9WodtrEdXqosFyzjnMk9xY5U6vZyLp4oCmofVB2DqiGoOgRVO_YH4eNqhA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Grießhammer, Harald W.</creator><creator>McGovern, Judith A.</creator><creator>Nogga, Andreas</creator><creator>Phillips, Daniel R.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9953-6512</orcidid><orcidid>https://orcid.org/0000-0003-2156-748X</orcidid><orcidid>https://orcid.org/0000-0001-8364-1724</orcidid><orcidid>https://orcid.org/0000-0003-1596-9087</orcidid></search><sort><creationdate>20201201</creationdate><title>Scattering Observables from One- and Two-body Densities: Formalism and Application to γ3He Scattering</title><author>Grießhammer, Harald W. ; McGovern, Judith A. ; Nogga, Andreas ; Phillips, Daniel R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-9affd90c017bd101cebedcb69e9555bf74c15257afae67c95c43a7b885374a333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic</topic><topic>Density</topic><topic>Elastic scattering</topic><topic>Field theory</topic><topic>Formalism</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Molecular</topic><topic>Nuclear Physics</topic><topic>Nuclear structure</topic><topic>Nuclei</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grießhammer, Harald W.</creatorcontrib><creatorcontrib>McGovern, Judith A.</creatorcontrib><creatorcontrib>Nogga, Andreas</creatorcontrib><creatorcontrib>Phillips, Daniel R.</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Few-body systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grießhammer, Harald W.</au><au>McGovern, Judith A.</au><au>Nogga, Andreas</au><au>Phillips, Daniel R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scattering Observables from One- and Two-body Densities: Formalism and Application to γ3He Scattering</atitle><jtitle>Few-body systems</jtitle><stitle>Few-Body Syst</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>61</volume><issue>4</issue><issn>0177-7963</issn><eissn>1432-5411</eissn><abstract>We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated once and stored. They are then convoluted with an interaction kernel to produce amplitudes, and hence observables. By choosing different kernels, the same densities can be used for any reaction in which a probe interacts perturbatively with the target. The method therefore exploits the factorisation between nuclear structure and interaction kernel that occurs in such processes. We study in detail the convergence in the number of partial waves for matrix elements relevant in elastic Compton scattering on 3 He . The results are fully consistent with our previous calculations in Chiral Effective Field Theory. But the new approach is markedly more computationally efficient, which facilitates the inclusion of more partial-wave channels in the calculation. We also discuss the usefulness of the transition-density method for other nuclei and reactions. Calculations of elastic Compton scattering on heavier targets like 4 He are straightforward extensions of this study, since the same interaction kernels are used. And the generality of the formalism means that our 3 He densities can be used to evaluate any 3 He elastic-scattering observable with contributions from one- and two-body operators. They are available at https://datapub.fz-juelich.de/anogga .</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00601-020-01578-w</doi><orcidid>https://orcid.org/0000-0002-9953-6512</orcidid><orcidid>https://orcid.org/0000-0003-2156-748X</orcidid><orcidid>https://orcid.org/0000-0001-8364-1724</orcidid><orcidid>https://orcid.org/0000-0003-1596-9087</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0177-7963
ispartof Few-body systems, 2020-12, Vol.61 (4)
issn 0177-7963
1432-5411
language eng
recordid cdi_proquest_journals_2473255393
source Springer Nature - Complete Springer Journals
subjects Atomic
Density
Elastic scattering
Field theory
Formalism
Hadrons
Heavy Ions
Kernels
Mathematical analysis
Molecular
Nuclear Physics
Nuclear structure
Nuclei
Optical and Plasma Physics
Particle and Nuclear Physics
Physics
Physics and Astronomy
title Scattering Observables from One- and Two-body Densities: Formalism and Application to γ3He Scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scattering%20Observables%20from%20One-%20and%20Two-body%20Densities:%20Formalism%20and%20Application%20to%20%CE%B33He%20Scattering&rft.jtitle=Few-body%20systems&rft.au=Grie%C3%9Fhammer,%20Harald%20W.&rft.date=2020-12-01&rft.volume=61&rft.issue=4&rft.issn=0177-7963&rft.eissn=1432-5411&rft_id=info:doi/10.1007/s00601-020-01578-w&rft_dat=%3Cproquest_sprin%3E2473255393%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473255393&rft_id=info:pmid/&rfr_iscdi=true