Scattering Observables from One- and Two-body Densities: Formalism and Application to γ3He Scattering
We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated once and stored. They are then convoluted with an...
Gespeichert in:
Veröffentlicht in: | Few-body systems 2020-12, Vol.61 (4) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Few-body systems |
container_volume | 61 |
creator | Grießhammer, Harald W. McGovern, Judith A. Nogga, Andreas Phillips, Daniel R. |
description | We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated once and stored. They are then convoluted with an interaction kernel to produce amplitudes, and hence observables. By choosing different kernels, the same densities can be used for any reaction in which a probe interacts perturbatively with the target. The method therefore exploits the factorisation between nuclear structure and interaction kernel that occurs in such processes. We study in detail the convergence in the number of partial waves for matrix elements relevant in elastic Compton scattering on
3
He
. The results are fully consistent with our previous calculations in Chiral Effective Field Theory. But the new approach is markedly more computationally efficient, which facilitates the inclusion of more partial-wave channels in the calculation. We also discuss the usefulness of the transition-density method for other nuclei and reactions. Calculations of elastic Compton scattering on heavier targets like
4
He
are straightforward extensions of this study, since the same interaction kernels are used. And the generality of the formalism means that our
3
He
densities can be used to evaluate any
3
He
elastic-scattering observable with contributions from one- and two-body operators. They are available at
https://datapub.fz-juelich.de/anogga
. |
doi_str_mv | 10.1007/s00601-020-01578-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2473255393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473255393</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-9affd90c017bd101cebedcb69e9555bf74c15257afae67c95c43a7b885374a333</originalsourceid><addsrcrecordid>eNpFkMFKAzEURYMoWKs_4CrgOvoymUwad6VaKxRmYV2HJJPIlOlkTKYWv8v_8JuctkJXb3O473AQuqVwTwHEQwIogBLIgADlYkJ2Z2hEc5YRnlN6jkZAhSBCFuwSXaW0hoGSFEbIv1nd9y7W7QcuTXLxS5vGJexj2OCydQTrtsKrXSAmVN_4ybWp7muXHvE8xI1u6rQ5ENOua-phqg4t7gP-_WELh0_b1-jC6ya5m_87Ru_z59VsQZbly-tsuiTdYN0Tqb2vJNjB1lQUqHXGVdYU0knOufEit5RnXGivXSGs5DZnWpjJhDORa8bYGN0dd7sYPrcu9WodtrEdXqosFyzjnMk9xY5U6vZyLp4oCmofVB2DqiGoOgRVO_YH4eNqhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473255393</pqid></control><display><type>article</type><title>Scattering Observables from One- and Two-body Densities: Formalism and Application to γ3He Scattering</title><source>Springer Nature - Complete Springer Journals</source><creator>Grießhammer, Harald W. ; McGovern, Judith A. ; Nogga, Andreas ; Phillips, Daniel R.</creator><creatorcontrib>Grießhammer, Harald W. ; McGovern, Judith A. ; Nogga, Andreas ; Phillips, Daniel R.</creatorcontrib><description>We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated once and stored. They are then convoluted with an interaction kernel to produce amplitudes, and hence observables. By choosing different kernels, the same densities can be used for any reaction in which a probe interacts perturbatively with the target. The method therefore exploits the factorisation between nuclear structure and interaction kernel that occurs in such processes. We study in detail the convergence in the number of partial waves for matrix elements relevant in elastic Compton scattering on
3
He
. The results are fully consistent with our previous calculations in Chiral Effective Field Theory. But the new approach is markedly more computationally efficient, which facilitates the inclusion of more partial-wave channels in the calculation. We also discuss the usefulness of the transition-density method for other nuclei and reactions. Calculations of elastic Compton scattering on heavier targets like
4
He
are straightforward extensions of this study, since the same interaction kernels are used. And the generality of the formalism means that our
3
He
densities can be used to evaluate any
3
He
elastic-scattering observable with contributions from one- and two-body operators. They are available at
https://datapub.fz-juelich.de/anogga
.</description><identifier>ISSN: 0177-7963</identifier><identifier>EISSN: 1432-5411</identifier><identifier>DOI: 10.1007/s00601-020-01578-w</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Atomic ; Density ; Elastic scattering ; Field theory ; Formalism ; Hadrons ; Heavy Ions ; Kernels ; Mathematical analysis ; Molecular ; Nuclear Physics ; Nuclear structure ; Nuclei ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy</subject><ispartof>Few-body systems, 2020-12, Vol.61 (4)</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9953-6512 ; 0000-0003-2156-748X ; 0000-0001-8364-1724 ; 0000-0003-1596-9087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00601-020-01578-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00601-020-01578-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Grießhammer, Harald W.</creatorcontrib><creatorcontrib>McGovern, Judith A.</creatorcontrib><creatorcontrib>Nogga, Andreas</creatorcontrib><creatorcontrib>Phillips, Daniel R.</creatorcontrib><title>Scattering Observables from One- and Two-body Densities: Formalism and Application to γ3He Scattering</title><title>Few-body systems</title><addtitle>Few-Body Syst</addtitle><description>We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated once and stored. They are then convoluted with an interaction kernel to produce amplitudes, and hence observables. By choosing different kernels, the same densities can be used for any reaction in which a probe interacts perturbatively with the target. The method therefore exploits the factorisation between nuclear structure and interaction kernel that occurs in such processes. We study in detail the convergence in the number of partial waves for matrix elements relevant in elastic Compton scattering on
3
He
. The results are fully consistent with our previous calculations in Chiral Effective Field Theory. But the new approach is markedly more computationally efficient, which facilitates the inclusion of more partial-wave channels in the calculation. We also discuss the usefulness of the transition-density method for other nuclei and reactions. Calculations of elastic Compton scattering on heavier targets like
4
He
are straightforward extensions of this study, since the same interaction kernels are used. And the generality of the formalism means that our
3
He
densities can be used to evaluate any
3
He
elastic-scattering observable with contributions from one- and two-body operators. They are available at
https://datapub.fz-juelich.de/anogga
.</description><subject>Atomic</subject><subject>Density</subject><subject>Elastic scattering</subject><subject>Field theory</subject><subject>Formalism</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Molecular</subject><subject>Nuclear Physics</subject><subject>Nuclear structure</subject><subject>Nuclei</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0177-7963</issn><issn>1432-5411</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkMFKAzEURYMoWKs_4CrgOvoymUwad6VaKxRmYV2HJJPIlOlkTKYWv8v_8JuctkJXb3O473AQuqVwTwHEQwIogBLIgADlYkJ2Z2hEc5YRnlN6jkZAhSBCFuwSXaW0hoGSFEbIv1nd9y7W7QcuTXLxS5vGJexj2OCydQTrtsKrXSAmVN_4ybWp7muXHvE8xI1u6rQ5ENOua-phqg4t7gP-_WELh0_b1-jC6ya5m_87Ru_z59VsQZbly-tsuiTdYN0Tqb2vJNjB1lQUqHXGVdYU0knOufEit5RnXGivXSGs5DZnWpjJhDORa8bYGN0dd7sYPrcu9WodtrEdXqosFyzjnMk9xY5U6vZyLp4oCmofVB2DqiGoOgRVO_YH4eNqhA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Grießhammer, Harald W.</creator><creator>McGovern, Judith A.</creator><creator>Nogga, Andreas</creator><creator>Phillips, Daniel R.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9953-6512</orcidid><orcidid>https://orcid.org/0000-0003-2156-748X</orcidid><orcidid>https://orcid.org/0000-0001-8364-1724</orcidid><orcidid>https://orcid.org/0000-0003-1596-9087</orcidid></search><sort><creationdate>20201201</creationdate><title>Scattering Observables from One- and Two-body Densities: Formalism and Application to γ3He Scattering</title><author>Grießhammer, Harald W. ; McGovern, Judith A. ; Nogga, Andreas ; Phillips, Daniel R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-9affd90c017bd101cebedcb69e9555bf74c15257afae67c95c43a7b885374a333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic</topic><topic>Density</topic><topic>Elastic scattering</topic><topic>Field theory</topic><topic>Formalism</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Molecular</topic><topic>Nuclear Physics</topic><topic>Nuclear structure</topic><topic>Nuclei</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grießhammer, Harald W.</creatorcontrib><creatorcontrib>McGovern, Judith A.</creatorcontrib><creatorcontrib>Nogga, Andreas</creatorcontrib><creatorcontrib>Phillips, Daniel R.</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Few-body systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grießhammer, Harald W.</au><au>McGovern, Judith A.</au><au>Nogga, Andreas</au><au>Phillips, Daniel R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scattering Observables from One- and Two-body Densities: Formalism and Application to γ3He Scattering</atitle><jtitle>Few-body systems</jtitle><stitle>Few-Body Syst</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>61</volume><issue>4</issue><issn>0177-7963</issn><eissn>1432-5411</eissn><abstract>We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated once and stored. They are then convoluted with an interaction kernel to produce amplitudes, and hence observables. By choosing different kernels, the same densities can be used for any reaction in which a probe interacts perturbatively with the target. The method therefore exploits the factorisation between nuclear structure and interaction kernel that occurs in such processes. We study in detail the convergence in the number of partial waves for matrix elements relevant in elastic Compton scattering on
3
He
. The results are fully consistent with our previous calculations in Chiral Effective Field Theory. But the new approach is markedly more computationally efficient, which facilitates the inclusion of more partial-wave channels in the calculation. We also discuss the usefulness of the transition-density method for other nuclei and reactions. Calculations of elastic Compton scattering on heavier targets like
4
He
are straightforward extensions of this study, since the same interaction kernels are used. And the generality of the formalism means that our
3
He
densities can be used to evaluate any
3
He
elastic-scattering observable with contributions from one- and two-body operators. They are available at
https://datapub.fz-juelich.de/anogga
.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00601-020-01578-w</doi><orcidid>https://orcid.org/0000-0002-9953-6512</orcidid><orcidid>https://orcid.org/0000-0003-2156-748X</orcidid><orcidid>https://orcid.org/0000-0001-8364-1724</orcidid><orcidid>https://orcid.org/0000-0003-1596-9087</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-7963 |
ispartof | Few-body systems, 2020-12, Vol.61 (4) |
issn | 0177-7963 1432-5411 |
language | eng |
recordid | cdi_proquest_journals_2473255393 |
source | Springer Nature - Complete Springer Journals |
subjects | Atomic Density Elastic scattering Field theory Formalism Hadrons Heavy Ions Kernels Mathematical analysis Molecular Nuclear Physics Nuclear structure Nuclei Optical and Plasma Physics Particle and Nuclear Physics Physics Physics and Astronomy |
title | Scattering Observables from One- and Two-body Densities: Formalism and Application to γ3He Scattering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scattering%20Observables%20from%20One-%20and%20Two-body%20Densities:%20Formalism%20and%20Application%20to%20%CE%B33He%20Scattering&rft.jtitle=Few-body%20systems&rft.au=Grie%C3%9Fhammer,%20Harald%20W.&rft.date=2020-12-01&rft.volume=61&rft.issue=4&rft.issn=0177-7963&rft.eissn=1432-5411&rft_id=info:doi/10.1007/s00601-020-01578-w&rft_dat=%3Cproquest_sprin%3E2473255393%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473255393&rft_id=info:pmid/&rfr_iscdi=true |