Mechanical and microstructural enhancements of Ag microparticle-sintered joint by ultrasonic vibration
Silver (Ag) microparticle sintering bonding is a promising die-attach method for power device packaging. In this study, an ultrasonic-assisted bonding method that bonds chestnut-burr-like Ag microparticles rapidly at low temperatures is reported. Robust joints with an average shear strength of 36.2 ...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2020-12, Vol.31 (23), p.21711-21722 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21722 |
---|---|
container_issue | 23 |
container_start_page | 21711 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 31 |
creator | Gao, Runhua Shen, Yu-An Li, Jiahui He, Siliang Nishikawa, Hiroshi |
description | Silver (Ag) microparticle sintering bonding is a promising die-attach method for power device packaging. In this study, an ultrasonic-assisted bonding method that bonds chestnut-burr-like Ag microparticles rapidly at low temperatures is reported. Robust joints with an average shear strength of 36.2 MPa were achieved under ~ 240 °C (actual) 7 MPa in 300 s. Based on characterization of sintered microstructures obtained with different ultrasonic time and power, effects of the ultrasonic vibration were studied. Two unique microstructures, microbridges and dense layers, were generated with the ultrasonic vibration. The former achieved microparticle sintering, and the latter changed fracture mode of the joints from brittle interfacial debonding to ductile fracture. The results indicate the microbridges and dense layers enhanced the joints within a certain range and are generated due to crystallization driven by localized plastic deformation and localized high temperatures. |
doi_str_mv | 10.1007/s10854-020-04684-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473221555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473221555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-805dacbbea9d48dc6a677da08b501fb569593dc94c17e16e49fad3ff090fe87d3</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEmX5A5wicTaMtzg5VhWbVMQFJG6W46WkSpNiO6j997gEiRunGc2890bzIXRF4IYAyNtIoBIcAwUMvKw43h2hGRGSYV7R92M0g1pIzAWlp-gsxjUAlJxVM-SfnfnQfWt0V-jeFpvWhCGmMJo0hjxzfd4at3F9isXgi_lqkmx1SK3pHI5tn1xwtlgPuSuafTF2Keg45Mziq22CTu3QX6ATr7voLn_rOXq7v3tdPOLly8PTYr7EhpE64QqE1aZpnK4tr6wpdSml1VA1AohvRFmLmllTc0OkI6XjtdeWeQ81eFdJy87R9ZS7DcPn6GJS62EMfT6pKJeMUiKEyCo6qQ6_xuC82oZ2o8NeEVAHnmriqTJP9cNT7bKJTaaYxf3Khb_of1zf1_J8SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473221555</pqid></control><display><type>article</type><title>Mechanical and microstructural enhancements of Ag microparticle-sintered joint by ultrasonic vibration</title><source>Springer Nature - Complete Springer Journals</source><creator>Gao, Runhua ; Shen, Yu-An ; Li, Jiahui ; He, Siliang ; Nishikawa, Hiroshi</creator><creatorcontrib>Gao, Runhua ; Shen, Yu-An ; Li, Jiahui ; He, Siliang ; Nishikawa, Hiroshi</creatorcontrib><description>Silver (Ag) microparticle sintering bonding is a promising die-attach method for power device packaging. In this study, an ultrasonic-assisted bonding method that bonds chestnut-burr-like Ag microparticles rapidly at low temperatures is reported. Robust joints with an average shear strength of 36.2 MPa were achieved under ~ 240 °C (actual) 7 MPa in 300 s. Based on characterization of sintered microstructures obtained with different ultrasonic time and power, effects of the ultrasonic vibration were studied. Two unique microstructures, microbridges and dense layers, were generated with the ultrasonic vibration. The former achieved microparticle sintering, and the latter changed fracture mode of the joints from brittle interfacial debonding to ductile fracture. The results indicate the microbridges and dense layers enhanced the joints within a certain range and are generated due to crystallization driven by localized plastic deformation and localized high temperatures.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-04684-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bonded joints ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallization ; Ductile fracture ; Ductile-brittle transition ; Heat treating ; Low temperature ; Materials Science ; Microparticles ; Microstructure ; Optical and Electronic Materials ; Plastic deformation ; Shear strength ; Sintering ; Ultrasonic testing ; Ultrasonic vibration</subject><ispartof>Journal of materials science. Materials in electronics, 2020-12, Vol.31 (23), p.21711-21722</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-805dacbbea9d48dc6a677da08b501fb569593dc94c17e16e49fad3ff090fe87d3</citedby><cites>FETCH-LOGICAL-c319t-805dacbbea9d48dc6a677da08b501fb569593dc94c17e16e49fad3ff090fe87d3</cites><orcidid>0000-0003-1672-8066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-04684-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-04684-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Gao, Runhua</creatorcontrib><creatorcontrib>Shen, Yu-An</creatorcontrib><creatorcontrib>Li, Jiahui</creatorcontrib><creatorcontrib>He, Siliang</creatorcontrib><creatorcontrib>Nishikawa, Hiroshi</creatorcontrib><title>Mechanical and microstructural enhancements of Ag microparticle-sintered joint by ultrasonic vibration</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Silver (Ag) microparticle sintering bonding is a promising die-attach method for power device packaging. In this study, an ultrasonic-assisted bonding method that bonds chestnut-burr-like Ag microparticles rapidly at low temperatures is reported. Robust joints with an average shear strength of 36.2 MPa were achieved under ~ 240 °C (actual) 7 MPa in 300 s. Based on characterization of sintered microstructures obtained with different ultrasonic time and power, effects of the ultrasonic vibration were studied. Two unique microstructures, microbridges and dense layers, were generated with the ultrasonic vibration. The former achieved microparticle sintering, and the latter changed fracture mode of the joints from brittle interfacial debonding to ductile fracture. The results indicate the microbridges and dense layers enhanced the joints within a certain range and are generated due to crystallization driven by localized plastic deformation and localized high temperatures.</description><subject>Bonded joints</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallization</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Heat treating</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Microparticles</subject><subject>Microstructure</subject><subject>Optical and Electronic Materials</subject><subject>Plastic deformation</subject><subject>Shear strength</subject><subject>Sintering</subject><subject>Ultrasonic testing</subject><subject>Ultrasonic vibration</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kElPwzAQhS0EEmX5A5wicTaMtzg5VhWbVMQFJG6W46WkSpNiO6j997gEiRunGc2890bzIXRF4IYAyNtIoBIcAwUMvKw43h2hGRGSYV7R92M0g1pIzAWlp-gsxjUAlJxVM-SfnfnQfWt0V-jeFpvWhCGmMJo0hjxzfd4at3F9isXgi_lqkmx1SK3pHI5tn1xwtlgPuSuafTF2Keg45Mziq22CTu3QX6ATr7voLn_rOXq7v3tdPOLly8PTYr7EhpE64QqE1aZpnK4tr6wpdSml1VA1AohvRFmLmllTc0OkI6XjtdeWeQ81eFdJy87R9ZS7DcPn6GJS62EMfT6pKJeMUiKEyCo6qQ6_xuC82oZ2o8NeEVAHnmriqTJP9cNT7bKJTaaYxf3Khb_of1zf1_J8SQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Gao, Runhua</creator><creator>Shen, Yu-An</creator><creator>Li, Jiahui</creator><creator>He, Siliang</creator><creator>Nishikawa, Hiroshi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-1672-8066</orcidid></search><sort><creationdate>20201201</creationdate><title>Mechanical and microstructural enhancements of Ag microparticle-sintered joint by ultrasonic vibration</title><author>Gao, Runhua ; Shen, Yu-An ; Li, Jiahui ; He, Siliang ; Nishikawa, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-805dacbbea9d48dc6a677da08b501fb569593dc94c17e16e49fad3ff090fe87d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bonded joints</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallization</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Heat treating</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Microparticles</topic><topic>Microstructure</topic><topic>Optical and Electronic Materials</topic><topic>Plastic deformation</topic><topic>Shear strength</topic><topic>Sintering</topic><topic>Ultrasonic testing</topic><topic>Ultrasonic vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Runhua</creatorcontrib><creatorcontrib>Shen, Yu-An</creatorcontrib><creatorcontrib>Li, Jiahui</creatorcontrib><creatorcontrib>He, Siliang</creatorcontrib><creatorcontrib>Nishikawa, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Runhua</au><au>Shen, Yu-An</au><au>Li, Jiahui</au><au>He, Siliang</au><au>Nishikawa, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and microstructural enhancements of Ag microparticle-sintered joint by ultrasonic vibration</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>31</volume><issue>23</issue><spage>21711</spage><epage>21722</epage><pages>21711-21722</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Silver (Ag) microparticle sintering bonding is a promising die-attach method for power device packaging. In this study, an ultrasonic-assisted bonding method that bonds chestnut-burr-like Ag microparticles rapidly at low temperatures is reported. Robust joints with an average shear strength of 36.2 MPa were achieved under ~ 240 °C (actual) 7 MPa in 300 s. Based on characterization of sintered microstructures obtained with different ultrasonic time and power, effects of the ultrasonic vibration were studied. Two unique microstructures, microbridges and dense layers, were generated with the ultrasonic vibration. The former achieved microparticle sintering, and the latter changed fracture mode of the joints from brittle interfacial debonding to ductile fracture. The results indicate the microbridges and dense layers enhanced the joints within a certain range and are generated due to crystallization driven by localized plastic deformation and localized high temperatures.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-04684-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1672-8066</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2020-12, Vol.31 (23), p.21711-21722 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2473221555 |
source | Springer Nature - Complete Springer Journals |
subjects | Bonded joints Characterization and Evaluation of Materials Chemistry and Materials Science Crystallization Ductile fracture Ductile-brittle transition Heat treating Low temperature Materials Science Microparticles Microstructure Optical and Electronic Materials Plastic deformation Shear strength Sintering Ultrasonic testing Ultrasonic vibration |
title | Mechanical and microstructural enhancements of Ag microparticle-sintered joint by ultrasonic vibration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20microstructural%20enhancements%20of%20Ag%20microparticle-sintered%20joint%20by%20ultrasonic%20vibration&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Gao,%20Runhua&rft.date=2020-12-01&rft.volume=31&rft.issue=23&rft.spage=21711&rft.epage=21722&rft.pages=21711-21722&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-04684-x&rft_dat=%3Cproquest_cross%3E2473221555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473221555&rft_id=info:pmid/&rfr_iscdi=true |