Mechanical and microstructural enhancements of Ag microparticle-sintered joint by ultrasonic vibration

Silver (Ag) microparticle sintering bonding is a promising die-attach method for power device packaging. In this study, an ultrasonic-assisted bonding method that bonds chestnut-burr-like Ag microparticles rapidly at low temperatures is reported. Robust joints with an average shear strength of 36.2 ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2020-12, Vol.31 (23), p.21711-21722
Hauptverfasser: Gao, Runhua, Shen, Yu-An, Li, Jiahui, He, Siliang, Nishikawa, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21722
container_issue 23
container_start_page 21711
container_title Journal of materials science. Materials in electronics
container_volume 31
creator Gao, Runhua
Shen, Yu-An
Li, Jiahui
He, Siliang
Nishikawa, Hiroshi
description Silver (Ag) microparticle sintering bonding is a promising die-attach method for power device packaging. In this study, an ultrasonic-assisted bonding method that bonds chestnut-burr-like Ag microparticles rapidly at low temperatures is reported. Robust joints with an average shear strength of 36.2 MPa were achieved under ~ 240 °C (actual) 7 MPa in 300 s. Based on characterization of sintered microstructures obtained with different ultrasonic time and power, effects of the ultrasonic vibration were studied. Two unique microstructures, microbridges and dense layers, were generated with the ultrasonic vibration. The former achieved microparticle sintering, and the latter changed fracture mode of the joints from brittle interfacial debonding to ductile fracture. The results indicate the microbridges and dense layers enhanced the joints within a certain range and are generated due to crystallization driven by localized plastic deformation and localized high temperatures.
doi_str_mv 10.1007/s10854-020-04684-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473221555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473221555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-805dacbbea9d48dc6a677da08b501fb569593dc94c17e16e49fad3ff090fe87d3</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEmX5A5wicTaMtzg5VhWbVMQFJG6W46WkSpNiO6j997gEiRunGc2890bzIXRF4IYAyNtIoBIcAwUMvKw43h2hGRGSYV7R92M0g1pIzAWlp-gsxjUAlJxVM-SfnfnQfWt0V-jeFpvWhCGmMJo0hjxzfd4at3F9isXgi_lqkmx1SK3pHI5tn1xwtlgPuSuafTF2Keg45Mziq22CTu3QX6ATr7voLn_rOXq7v3tdPOLly8PTYr7EhpE64QqE1aZpnK4tr6wpdSml1VA1AohvRFmLmllTc0OkI6XjtdeWeQ81eFdJy87R9ZS7DcPn6GJS62EMfT6pKJeMUiKEyCo6qQ6_xuC82oZ2o8NeEVAHnmriqTJP9cNT7bKJTaaYxf3Khb_of1zf1_J8SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473221555</pqid></control><display><type>article</type><title>Mechanical and microstructural enhancements of Ag microparticle-sintered joint by ultrasonic vibration</title><source>Springer Nature - Complete Springer Journals</source><creator>Gao, Runhua ; Shen, Yu-An ; Li, Jiahui ; He, Siliang ; Nishikawa, Hiroshi</creator><creatorcontrib>Gao, Runhua ; Shen, Yu-An ; Li, Jiahui ; He, Siliang ; Nishikawa, Hiroshi</creatorcontrib><description>Silver (Ag) microparticle sintering bonding is a promising die-attach method for power device packaging. In this study, an ultrasonic-assisted bonding method that bonds chestnut-burr-like Ag microparticles rapidly at low temperatures is reported. Robust joints with an average shear strength of 36.2 MPa were achieved under ~ 240 °C (actual) 7 MPa in 300 s. Based on characterization of sintered microstructures obtained with different ultrasonic time and power, effects of the ultrasonic vibration were studied. Two unique microstructures, microbridges and dense layers, were generated with the ultrasonic vibration. The former achieved microparticle sintering, and the latter changed fracture mode of the joints from brittle interfacial debonding to ductile fracture. The results indicate the microbridges and dense layers enhanced the joints within a certain range and are generated due to crystallization driven by localized plastic deformation and localized high temperatures.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-04684-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bonded joints ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallization ; Ductile fracture ; Ductile-brittle transition ; Heat treating ; Low temperature ; Materials Science ; Microparticles ; Microstructure ; Optical and Electronic Materials ; Plastic deformation ; Shear strength ; Sintering ; Ultrasonic testing ; Ultrasonic vibration</subject><ispartof>Journal of materials science. Materials in electronics, 2020-12, Vol.31 (23), p.21711-21722</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-805dacbbea9d48dc6a677da08b501fb569593dc94c17e16e49fad3ff090fe87d3</citedby><cites>FETCH-LOGICAL-c319t-805dacbbea9d48dc6a677da08b501fb569593dc94c17e16e49fad3ff090fe87d3</cites><orcidid>0000-0003-1672-8066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-04684-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-04684-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Gao, Runhua</creatorcontrib><creatorcontrib>Shen, Yu-An</creatorcontrib><creatorcontrib>Li, Jiahui</creatorcontrib><creatorcontrib>He, Siliang</creatorcontrib><creatorcontrib>Nishikawa, Hiroshi</creatorcontrib><title>Mechanical and microstructural enhancements of Ag microparticle-sintered joint by ultrasonic vibration</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Silver (Ag) microparticle sintering bonding is a promising die-attach method for power device packaging. In this study, an ultrasonic-assisted bonding method that bonds chestnut-burr-like Ag microparticles rapidly at low temperatures is reported. Robust joints with an average shear strength of 36.2 MPa were achieved under ~ 240 °C (actual) 7 MPa in 300 s. Based on characterization of sintered microstructures obtained with different ultrasonic time and power, effects of the ultrasonic vibration were studied. Two unique microstructures, microbridges and dense layers, were generated with the ultrasonic vibration. The former achieved microparticle sintering, and the latter changed fracture mode of the joints from brittle interfacial debonding to ductile fracture. The results indicate the microbridges and dense layers enhanced the joints within a certain range and are generated due to crystallization driven by localized plastic deformation and localized high temperatures.</description><subject>Bonded joints</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallization</subject><subject>Ductile fracture</subject><subject>Ductile-brittle transition</subject><subject>Heat treating</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Microparticles</subject><subject>Microstructure</subject><subject>Optical and Electronic Materials</subject><subject>Plastic deformation</subject><subject>Shear strength</subject><subject>Sintering</subject><subject>Ultrasonic testing</subject><subject>Ultrasonic vibration</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kElPwzAQhS0EEmX5A5wicTaMtzg5VhWbVMQFJG6W46WkSpNiO6j997gEiRunGc2890bzIXRF4IYAyNtIoBIcAwUMvKw43h2hGRGSYV7R92M0g1pIzAWlp-gsxjUAlJxVM-SfnfnQfWt0V-jeFpvWhCGmMJo0hjxzfd4at3F9isXgi_lqkmx1SK3pHI5tn1xwtlgPuSuafTF2Keg45Mziq22CTu3QX6ATr7voLn_rOXq7v3tdPOLly8PTYr7EhpE64QqE1aZpnK4tr6wpdSml1VA1AohvRFmLmllTc0OkI6XjtdeWeQ81eFdJy87R9ZS7DcPn6GJS62EMfT6pKJeMUiKEyCo6qQ6_xuC82oZ2o8NeEVAHnmriqTJP9cNT7bKJTaaYxf3Khb_of1zf1_J8SQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Gao, Runhua</creator><creator>Shen, Yu-An</creator><creator>Li, Jiahui</creator><creator>He, Siliang</creator><creator>Nishikawa, Hiroshi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-1672-8066</orcidid></search><sort><creationdate>20201201</creationdate><title>Mechanical and microstructural enhancements of Ag microparticle-sintered joint by ultrasonic vibration</title><author>Gao, Runhua ; Shen, Yu-An ; Li, Jiahui ; He, Siliang ; Nishikawa, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-805dacbbea9d48dc6a677da08b501fb569593dc94c17e16e49fad3ff090fe87d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bonded joints</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallization</topic><topic>Ductile fracture</topic><topic>Ductile-brittle transition</topic><topic>Heat treating</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Microparticles</topic><topic>Microstructure</topic><topic>Optical and Electronic Materials</topic><topic>Plastic deformation</topic><topic>Shear strength</topic><topic>Sintering</topic><topic>Ultrasonic testing</topic><topic>Ultrasonic vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Runhua</creatorcontrib><creatorcontrib>Shen, Yu-An</creatorcontrib><creatorcontrib>Li, Jiahui</creatorcontrib><creatorcontrib>He, Siliang</creatorcontrib><creatorcontrib>Nishikawa, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Runhua</au><au>Shen, Yu-An</au><au>Li, Jiahui</au><au>He, Siliang</au><au>Nishikawa, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and microstructural enhancements of Ag microparticle-sintered joint by ultrasonic vibration</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>31</volume><issue>23</issue><spage>21711</spage><epage>21722</epage><pages>21711-21722</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Silver (Ag) microparticle sintering bonding is a promising die-attach method for power device packaging. In this study, an ultrasonic-assisted bonding method that bonds chestnut-burr-like Ag microparticles rapidly at low temperatures is reported. Robust joints with an average shear strength of 36.2 MPa were achieved under ~ 240 °C (actual) 7 MPa in 300 s. Based on characterization of sintered microstructures obtained with different ultrasonic time and power, effects of the ultrasonic vibration were studied. Two unique microstructures, microbridges and dense layers, were generated with the ultrasonic vibration. The former achieved microparticle sintering, and the latter changed fracture mode of the joints from brittle interfacial debonding to ductile fracture. The results indicate the microbridges and dense layers enhanced the joints within a certain range and are generated due to crystallization driven by localized plastic deformation and localized high temperatures.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-04684-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1672-8066</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2020-12, Vol.31 (23), p.21711-21722
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2473221555
source Springer Nature - Complete Springer Journals
subjects Bonded joints
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallization
Ductile fracture
Ductile-brittle transition
Heat treating
Low temperature
Materials Science
Microparticles
Microstructure
Optical and Electronic Materials
Plastic deformation
Shear strength
Sintering
Ultrasonic testing
Ultrasonic vibration
title Mechanical and microstructural enhancements of Ag microparticle-sintered joint by ultrasonic vibration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20microstructural%20enhancements%20of%20Ag%20microparticle-sintered%20joint%20by%20ultrasonic%20vibration&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Gao,%20Runhua&rft.date=2020-12-01&rft.volume=31&rft.issue=23&rft.spage=21711&rft.epage=21722&rft.pages=21711-21722&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-04684-x&rft_dat=%3Cproquest_cross%3E2473221555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473221555&rft_id=info:pmid/&rfr_iscdi=true