Lattice vibrational characteristics and dielectric properties of pure phase CaTiO3 ceramic

CaTiO 3 microwave dielectric ceramic was fabricated utilizing traditional two-step sintering process. XRD pattern analysis after Rietveld refinement indicated a pure phase CaTiO 3 sample. SEM image illustrated well-crystallized sample with uniform grain sizes and clear grain boundaries. The lattice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2020-10, Vol.31 (20), p.18070-18076
Hauptverfasser: Shi, Feng, Fu, Guang-en, Xiao, En-Cai, Li, Jianzhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18076
container_issue 20
container_start_page 18070
container_title Journal of materials science. Materials in electronics
container_volume 31
creator Shi, Feng
Fu, Guang-en
Xiao, En-Cai
Li, Jianzhu
description CaTiO 3 microwave dielectric ceramic was fabricated utilizing traditional two-step sintering process. XRD pattern analysis after Rietveld refinement indicated a pure phase CaTiO 3 sample. SEM image illustrated well-crystallized sample with uniform grain sizes and clear grain boundaries. The lattice vibrational characteristics were analyzed by Raman and IR spectroscopy, and the intrinsic properties were calculated in conjunction with the semi-quantum four-parameter (FPSQ) model, which turned out that the low-frequency vibrational modes contribute the most to the dielectric properties. Besides, the real and imaginary parts of the dielectric function were drawn from the FPSQ model. The intrinsic property results fitted from the FPSQ model agree well with the measured values.
doi_str_mv 10.1007/s10854-020-04357-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473220151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473220151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2349-8a3cb28bf10a1de248bf23e27db282a6460c74979b74207d250f13668820ba213</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPA8-pkkt3sHqWoFQq9VBAvIZudtSltd022gv_e1BW8eZph5r3HzMfYtYBbAaDvooAyVxkgZKBkrrPqhE1ErmWmSnw9ZROo0lDliOfsIsYNABRKlhP2trDD4B3xT18HO_hub7fcrW2wbqDgY9pFbvcNbzxtyQ3BO96HrqcweIq8a3l_CMT7tY3EZ3bll5I7Cnbn3SU7a-020tVvnbKXx4fVbJ4tlk_Ps_tF5lCqKiutdDWWdSvAioZQpRYloW7SFG2hCnBaVbqqtULQDebQClkUZYlQWxRyym7G3HTXx4HiYDbdIaQ_okGlJSKI_KjCUeVCF2Og1vTB72z4MgLMkaEZGZrE0PwwNFUyydEUk3j_TuEv-h_XN0Bfc9k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473220151</pqid></control><display><type>article</type><title>Lattice vibrational characteristics and dielectric properties of pure phase CaTiO3 ceramic</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shi, Feng ; Fu, Guang-en ; Xiao, En-Cai ; Li, Jianzhu</creator><creatorcontrib>Shi, Feng ; Fu, Guang-en ; Xiao, En-Cai ; Li, Jianzhu</creatorcontrib><description>CaTiO 3 microwave dielectric ceramic was fabricated utilizing traditional two-step sintering process. XRD pattern analysis after Rietveld refinement indicated a pure phase CaTiO 3 sample. SEM image illustrated well-crystallized sample with uniform grain sizes and clear grain boundaries. The lattice vibrational characteristics were analyzed by Raman and IR spectroscopy, and the intrinsic properties were calculated in conjunction with the semi-quantum four-parameter (FPSQ) model, which turned out that the low-frequency vibrational modes contribute the most to the dielectric properties. Besides, the real and imaginary parts of the dielectric function were drawn from the FPSQ model. The intrinsic property results fitted from the FPSQ model agree well with the measured values.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-020-04357-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallization ; Dielectric properties ; Drawing dies ; Grain boundaries ; Grain size ; Infrared spectroscopy ; Lattice vibration ; Materials Science ; Optical and Electronic Materials ; Pattern analysis</subject><ispartof>Journal of materials science. Materials in electronics, 2020-10, Vol.31 (20), p.18070-18076</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2349-8a3cb28bf10a1de248bf23e27db282a6460c74979b74207d250f13668820ba213</citedby><cites>FETCH-LOGICAL-c2349-8a3cb28bf10a1de248bf23e27db282a6460c74979b74207d250f13668820ba213</cites><orcidid>0000-0003-1043-2838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-020-04357-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-020-04357-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shi, Feng</creatorcontrib><creatorcontrib>Fu, Guang-en</creatorcontrib><creatorcontrib>Xiao, En-Cai</creatorcontrib><creatorcontrib>Li, Jianzhu</creatorcontrib><title>Lattice vibrational characteristics and dielectric properties of pure phase CaTiO3 ceramic</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>CaTiO 3 microwave dielectric ceramic was fabricated utilizing traditional two-step sintering process. XRD pattern analysis after Rietveld refinement indicated a pure phase CaTiO 3 sample. SEM image illustrated well-crystallized sample with uniform grain sizes and clear grain boundaries. The lattice vibrational characteristics were analyzed by Raman and IR spectroscopy, and the intrinsic properties were calculated in conjunction with the semi-quantum four-parameter (FPSQ) model, which turned out that the low-frequency vibrational modes contribute the most to the dielectric properties. Besides, the real and imaginary parts of the dielectric function were drawn from the FPSQ model. The intrinsic property results fitted from the FPSQ model agree well with the measured values.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallization</subject><subject>Dielectric properties</subject><subject>Drawing dies</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Infrared spectroscopy</subject><subject>Lattice vibration</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Pattern analysis</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_wFPA8-pkkt3sHqWoFQq9VBAvIZudtSltd022gv_e1BW8eZph5r3HzMfYtYBbAaDvooAyVxkgZKBkrrPqhE1ErmWmSnw9ZROo0lDliOfsIsYNABRKlhP2trDD4B3xT18HO_hub7fcrW2wbqDgY9pFbvcNbzxtyQ3BO96HrqcweIq8a3l_CMT7tY3EZ3bll5I7Cnbn3SU7a-020tVvnbKXx4fVbJ4tlk_Ps_tF5lCqKiutdDWWdSvAioZQpRYloW7SFG2hCnBaVbqqtULQDebQClkUZYlQWxRyym7G3HTXx4HiYDbdIaQ_okGlJSKI_KjCUeVCF2Og1vTB72z4MgLMkaEZGZrE0PwwNFUyydEUk3j_TuEv-h_XN0Bfc9k</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Shi, Feng</creator><creator>Fu, Guang-en</creator><creator>Xiao, En-Cai</creator><creator>Li, Jianzhu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-1043-2838</orcidid></search><sort><creationdate>20201001</creationdate><title>Lattice vibrational characteristics and dielectric properties of pure phase CaTiO3 ceramic</title><author>Shi, Feng ; Fu, Guang-en ; Xiao, En-Cai ; Li, Jianzhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2349-8a3cb28bf10a1de248bf23e27db282a6460c74979b74207d250f13668820ba213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallization</topic><topic>Dielectric properties</topic><topic>Drawing dies</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Infrared spectroscopy</topic><topic>Lattice vibration</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Pattern analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Feng</creatorcontrib><creatorcontrib>Fu, Guang-en</creatorcontrib><creatorcontrib>Xiao, En-Cai</creatorcontrib><creatorcontrib>Li, Jianzhu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Feng</au><au>Fu, Guang-en</au><au>Xiao, En-Cai</au><au>Li, Jianzhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice vibrational characteristics and dielectric properties of pure phase CaTiO3 ceramic</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>31</volume><issue>20</issue><spage>18070</spage><epage>18076</epage><pages>18070-18076</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>CaTiO 3 microwave dielectric ceramic was fabricated utilizing traditional two-step sintering process. XRD pattern analysis after Rietveld refinement indicated a pure phase CaTiO 3 sample. SEM image illustrated well-crystallized sample with uniform grain sizes and clear grain boundaries. The lattice vibrational characteristics were analyzed by Raman and IR spectroscopy, and the intrinsic properties were calculated in conjunction with the semi-quantum four-parameter (FPSQ) model, which turned out that the low-frequency vibrational modes contribute the most to the dielectric properties. Besides, the real and imaginary parts of the dielectric function were drawn from the FPSQ model. The intrinsic property results fitted from the FPSQ model agree well with the measured values.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-020-04357-9</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1043-2838</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2020-10, Vol.31 (20), p.18070-18076
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2473220151
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallization
Dielectric properties
Drawing dies
Grain boundaries
Grain size
Infrared spectroscopy
Lattice vibration
Materials Science
Optical and Electronic Materials
Pattern analysis
title Lattice vibrational characteristics and dielectric properties of pure phase CaTiO3 ceramic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20vibrational%20characteristics%20and%20dielectric%20properties%20of%20pure%20phase%20CaTiO3%20ceramic&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Shi,%20Feng&rft.date=2020-10-01&rft.volume=31&rft.issue=20&rft.spage=18070&rft.epage=18076&rft.pages=18070-18076&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-020-04357-9&rft_dat=%3Cproquest_cross%3E2473220151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473220151&rft_id=info:pmid/&rfr_iscdi=true