High-energy multidimensional solitary states in hollow-core fibres

Multidimensional solitary states (MDSS)—self-sustained wavepackets—have attracted renewed interest in many different fields of physics. They are of particular importance in nonlinear optics, especially for the nonlinear propagation of ultrashort pulses in multimode fibres, which contain rich spatiot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2020-12, Vol.14 (12), p.733-739
Hauptverfasser: Safaei, Reza, Fan, Guangyu, Kwon, Ojoon, Légaré, Katherine, Lassonde, Philippe, Schmidt, Bruno E., Ibrahim, Heide, Légaré, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 739
container_issue 12
container_start_page 733
container_title Nature photonics
container_volume 14
creator Safaei, Reza
Fan, Guangyu
Kwon, Ojoon
Légaré, Katherine
Lassonde, Philippe
Schmidt, Bruno E.
Ibrahim, Heide
Légaré, François
description Multidimensional solitary states (MDSS)—self-sustained wavepackets—have attracted renewed interest in many different fields of physics. They are of particular importance in nonlinear optics, especially for the nonlinear propagation of ultrashort pulses in multimode fibres, which contain rich spatiotemporal intermodal interactions and dynamics, albeit often in an unstable manner. Here, we report the observation of the formation of highly stable multidimensional solitary states in a molecular gas-filled large-core hollow-core fibre. We experimentally and numerically demonstrate the creation of MDSS by multimillijoule, subpicosecond near-infrared pulses and the underlying physics. We find that the MDSS have a broadband redshifted spectra with an uncommon negative quadratic spectral phase at the output of the hollow-core fibre, originating from Raman enhancement due to the strong intermodal nonlinear interactions. The spatial and temporal localization of MDSS enables the compression of the broadened pulses at the output to 10.8 fs by simple linear propagation in a piece of fused silica. The high spatiotemporal quality of MDSS is further verified by high-harmonic generation. Our results present new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime. This work also presents a route toward a new class of compact, tunable and high-energy spatiotemporally engineered coherent light sources based on picosecond ytterbium technology. The formation of multidimensional solitary states through the nonlinear propagation of high-energy pulses in a molecular gas-filled large-core hollow-core fibre is demonstrated, offering new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime.
doi_str_mv 10.1038/s41566-020-00699-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473219133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473219133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-99730624226492841d1e3a9b228fb57642b0457f09d1f82f218b1ffc8d78f0a23</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMRvss5PYI1RAkSqxwGzlw05dJXHxJUL996QEwcZ0Nzzvq7uHkGvObjkT6g4lT7OMMmCUsUxrCidkwXOpqVRanP7uKj0nF4g7xlKhARbkYe2bLbW9jc0h6cZ28LXvbI8-9EWbYGj9UMRDgkMxWEx8n2xD24ZPWoVoE-fLaPGSnLmiRXv1M5fk_enxbbWmm9fnl9X9hlaC64FqnQuWgQTIpAYlec2tKHQJoFyZ5pmEksk0d0zX3ClwwFXJnatUnSvHChBLcjP37mP4GC0OZhfGOJ2JBmQugGsuxETBTFUxIEbrzD76bvrBcGaOrszsykyuzLcrc6wWcwgnuG9s_Kv-J_UF46Rrew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473219133</pqid></control><display><type>article</type><title>High-energy multidimensional solitary states in hollow-core fibres</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Safaei, Reza ; Fan, Guangyu ; Kwon, Ojoon ; Légaré, Katherine ; Lassonde, Philippe ; Schmidt, Bruno E. ; Ibrahim, Heide ; Légaré, François</creator><creatorcontrib>Safaei, Reza ; Fan, Guangyu ; Kwon, Ojoon ; Légaré, Katherine ; Lassonde, Philippe ; Schmidt, Bruno E. ; Ibrahim, Heide ; Légaré, François</creatorcontrib><description>Multidimensional solitary states (MDSS)—self-sustained wavepackets—have attracted renewed interest in many different fields of physics. They are of particular importance in nonlinear optics, especially for the nonlinear propagation of ultrashort pulses in multimode fibres, which contain rich spatiotemporal intermodal interactions and dynamics, albeit often in an unstable manner. Here, we report the observation of the formation of highly stable multidimensional solitary states in a molecular gas-filled large-core hollow-core fibre. We experimentally and numerically demonstrate the creation of MDSS by multimillijoule, subpicosecond near-infrared pulses and the underlying physics. We find that the MDSS have a broadband redshifted spectra with an uncommon negative quadratic spectral phase at the output of the hollow-core fibre, originating from Raman enhancement due to the strong intermodal nonlinear interactions. The spatial and temporal localization of MDSS enables the compression of the broadened pulses at the output to 10.8 fs by simple linear propagation in a piece of fused silica. The high spatiotemporal quality of MDSS is further verified by high-harmonic generation. Our results present new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime. This work also presents a route toward a new class of compact, tunable and high-energy spatiotemporally engineered coherent light sources based on picosecond ytterbium technology. The formation of multidimensional solitary states through the nonlinear propagation of high-energy pulses in a molecular gas-filled large-core hollow-core fibre is demonstrated, offering new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-020-00699-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400/1118 ; 639/624/400/385 ; 639/624/400/3923 ; 639/624/400/584 ; Applied and Technical Physics ; Broadband ; Coherent light ; Compression ; Energy ; Fibers ; Fused silica ; Harmonic generations ; Intermodal ; Light sources ; Localization ; Molecular gases ; Nonlinear optics ; Optics ; Physics ; Physics and Astronomy ; Propagation ; Pulse propagation ; Quantum Physics ; Silica ; Silicon dioxide ; Wave packets ; Ytterbium</subject><ispartof>Nature photonics, 2020-12, Vol.14 (12), p.733-739</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-99730624226492841d1e3a9b228fb57642b0457f09d1f82f218b1ffc8d78f0a23</citedby><cites>FETCH-LOGICAL-c319t-99730624226492841d1e3a9b228fb57642b0457f09d1f82f218b1ffc8d78f0a23</cites><orcidid>0000-0002-3065-7156 ; 0000-0001-6371-8501 ; 0000-0003-3206-1652 ; 0000-0002-8659-1432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-020-00699-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-020-00699-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Safaei, Reza</creatorcontrib><creatorcontrib>Fan, Guangyu</creatorcontrib><creatorcontrib>Kwon, Ojoon</creatorcontrib><creatorcontrib>Légaré, Katherine</creatorcontrib><creatorcontrib>Lassonde, Philippe</creatorcontrib><creatorcontrib>Schmidt, Bruno E.</creatorcontrib><creatorcontrib>Ibrahim, Heide</creatorcontrib><creatorcontrib>Légaré, François</creatorcontrib><title>High-energy multidimensional solitary states in hollow-core fibres</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>Multidimensional solitary states (MDSS)—self-sustained wavepackets—have attracted renewed interest in many different fields of physics. They are of particular importance in nonlinear optics, especially for the nonlinear propagation of ultrashort pulses in multimode fibres, which contain rich spatiotemporal intermodal interactions and dynamics, albeit often in an unstable manner. Here, we report the observation of the formation of highly stable multidimensional solitary states in a molecular gas-filled large-core hollow-core fibre. We experimentally and numerically demonstrate the creation of MDSS by multimillijoule, subpicosecond near-infrared pulses and the underlying physics. We find that the MDSS have a broadband redshifted spectra with an uncommon negative quadratic spectral phase at the output of the hollow-core fibre, originating from Raman enhancement due to the strong intermodal nonlinear interactions. The spatial and temporal localization of MDSS enables the compression of the broadened pulses at the output to 10.8 fs by simple linear propagation in a piece of fused silica. The high spatiotemporal quality of MDSS is further verified by high-harmonic generation. Our results present new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime. This work also presents a route toward a new class of compact, tunable and high-energy spatiotemporally engineered coherent light sources based on picosecond ytterbium technology. The formation of multidimensional solitary states through the nonlinear propagation of high-energy pulses in a molecular gas-filled large-core hollow-core fibre is demonstrated, offering new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime.</description><subject>639/624/400/1118</subject><subject>639/624/400/385</subject><subject>639/624/400/3923</subject><subject>639/624/400/584</subject><subject>Applied and Technical Physics</subject><subject>Broadband</subject><subject>Coherent light</subject><subject>Compression</subject><subject>Energy</subject><subject>Fibers</subject><subject>Fused silica</subject><subject>Harmonic generations</subject><subject>Intermodal</subject><subject>Light sources</subject><subject>Localization</subject><subject>Molecular gases</subject><subject>Nonlinear optics</subject><subject>Optics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Propagation</subject><subject>Pulse propagation</subject><subject>Quantum Physics</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Wave packets</subject><subject>Ytterbium</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5giMRvss5PYI1RAkSqxwGzlw05dJXHxJUL996QEwcZ0Nzzvq7uHkGvObjkT6g4lT7OMMmCUsUxrCidkwXOpqVRanP7uKj0nF4g7xlKhARbkYe2bLbW9jc0h6cZ28LXvbI8-9EWbYGj9UMRDgkMxWEx8n2xD24ZPWoVoE-fLaPGSnLmiRXv1M5fk_enxbbWmm9fnl9X9hlaC64FqnQuWgQTIpAYlec2tKHQJoFyZ5pmEksk0d0zX3ClwwFXJnatUnSvHChBLcjP37mP4GC0OZhfGOJ2JBmQugGsuxETBTFUxIEbrzD76bvrBcGaOrszsykyuzLcrc6wWcwgnuG9s_Kv-J_UF46Rrew</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Safaei, Reza</creator><creator>Fan, Guangyu</creator><creator>Kwon, Ojoon</creator><creator>Légaré, Katherine</creator><creator>Lassonde, Philippe</creator><creator>Schmidt, Bruno E.</creator><creator>Ibrahim, Heide</creator><creator>Légaré, François</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3065-7156</orcidid><orcidid>https://orcid.org/0000-0001-6371-8501</orcidid><orcidid>https://orcid.org/0000-0003-3206-1652</orcidid><orcidid>https://orcid.org/0000-0002-8659-1432</orcidid></search><sort><creationdate>20201201</creationdate><title>High-energy multidimensional solitary states in hollow-core fibres</title><author>Safaei, Reza ; Fan, Guangyu ; Kwon, Ojoon ; Légaré, Katherine ; Lassonde, Philippe ; Schmidt, Bruno E. ; Ibrahim, Heide ; Légaré, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-99730624226492841d1e3a9b228fb57642b0457f09d1f82f218b1ffc8d78f0a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/400/1118</topic><topic>639/624/400/385</topic><topic>639/624/400/3923</topic><topic>639/624/400/584</topic><topic>Applied and Technical Physics</topic><topic>Broadband</topic><topic>Coherent light</topic><topic>Compression</topic><topic>Energy</topic><topic>Fibers</topic><topic>Fused silica</topic><topic>Harmonic generations</topic><topic>Intermodal</topic><topic>Light sources</topic><topic>Localization</topic><topic>Molecular gases</topic><topic>Nonlinear optics</topic><topic>Optics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Propagation</topic><topic>Pulse propagation</topic><topic>Quantum Physics</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Wave packets</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safaei, Reza</creatorcontrib><creatorcontrib>Fan, Guangyu</creatorcontrib><creatorcontrib>Kwon, Ojoon</creatorcontrib><creatorcontrib>Légaré, Katherine</creatorcontrib><creatorcontrib>Lassonde, Philippe</creatorcontrib><creatorcontrib>Schmidt, Bruno E.</creatorcontrib><creatorcontrib>Ibrahim, Heide</creatorcontrib><creatorcontrib>Légaré, François</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safaei, Reza</au><au>Fan, Guangyu</au><au>Kwon, Ojoon</au><au>Légaré, Katherine</au><au>Lassonde, Philippe</au><au>Schmidt, Bruno E.</au><au>Ibrahim, Heide</au><au>Légaré, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-energy multidimensional solitary states in hollow-core fibres</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>14</volume><issue>12</issue><spage>733</spage><epage>739</epage><pages>733-739</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Multidimensional solitary states (MDSS)—self-sustained wavepackets—have attracted renewed interest in many different fields of physics. They are of particular importance in nonlinear optics, especially for the nonlinear propagation of ultrashort pulses in multimode fibres, which contain rich spatiotemporal intermodal interactions and dynamics, albeit often in an unstable manner. Here, we report the observation of the formation of highly stable multidimensional solitary states in a molecular gas-filled large-core hollow-core fibre. We experimentally and numerically demonstrate the creation of MDSS by multimillijoule, subpicosecond near-infrared pulses and the underlying physics. We find that the MDSS have a broadband redshifted spectra with an uncommon negative quadratic spectral phase at the output of the hollow-core fibre, originating from Raman enhancement due to the strong intermodal nonlinear interactions. The spatial and temporal localization of MDSS enables the compression of the broadened pulses at the output to 10.8 fs by simple linear propagation in a piece of fused silica. The high spatiotemporal quality of MDSS is further verified by high-harmonic generation. Our results present new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime. This work also presents a route toward a new class of compact, tunable and high-energy spatiotemporally engineered coherent light sources based on picosecond ytterbium technology. The formation of multidimensional solitary states through the nonlinear propagation of high-energy pulses in a molecular gas-filled large-core hollow-core fibre is demonstrated, offering new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-020-00699-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3065-7156</orcidid><orcidid>https://orcid.org/0000-0001-6371-8501</orcidid><orcidid>https://orcid.org/0000-0003-3206-1652</orcidid><orcidid>https://orcid.org/0000-0002-8659-1432</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2020-12, Vol.14 (12), p.733-739
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2473219133
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/624/400/1118
639/624/400/385
639/624/400/3923
639/624/400/584
Applied and Technical Physics
Broadband
Coherent light
Compression
Energy
Fibers
Fused silica
Harmonic generations
Intermodal
Light sources
Localization
Molecular gases
Nonlinear optics
Optics
Physics
Physics and Astronomy
Propagation
Pulse propagation
Quantum Physics
Silica
Silicon dioxide
Wave packets
Ytterbium
title High-energy multidimensional solitary states in hollow-core fibres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-energy%20multidimensional%20solitary%20states%20in%20hollow-core%20fibres&rft.jtitle=Nature%20photonics&rft.au=Safaei,%20Reza&rft.date=2020-12-01&rft.volume=14&rft.issue=12&rft.spage=733&rft.epage=739&rft.pages=733-739&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-020-00699-2&rft_dat=%3Cproquest_cross%3E2473219133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473219133&rft_id=info:pmid/&rfr_iscdi=true