High-energy multidimensional solitary states in hollow-core fibres
Multidimensional solitary states (MDSS)—self-sustained wavepackets—have attracted renewed interest in many different fields of physics. They are of particular importance in nonlinear optics, especially for the nonlinear propagation of ultrashort pulses in multimode fibres, which contain rich spatiot...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2020-12, Vol.14 (12), p.733-739 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 739 |
---|---|
container_issue | 12 |
container_start_page | 733 |
container_title | Nature photonics |
container_volume | 14 |
creator | Safaei, Reza Fan, Guangyu Kwon, Ojoon Légaré, Katherine Lassonde, Philippe Schmidt, Bruno E. Ibrahim, Heide Légaré, François |
description | Multidimensional solitary states (MDSS)—self-sustained wavepackets—have attracted renewed interest in many different fields of physics. They are of particular importance in nonlinear optics, especially for the nonlinear propagation of ultrashort pulses in multimode fibres, which contain rich spatiotemporal intermodal interactions and dynamics, albeit often in an unstable manner. Here, we report the observation of the formation of highly stable multidimensional solitary states in a molecular gas-filled large-core hollow-core fibre. We experimentally and numerically demonstrate the creation of MDSS by multimillijoule, subpicosecond near-infrared pulses and the underlying physics. We find that the MDSS have a broadband redshifted spectra with an uncommon negative quadratic spectral phase at the output of the hollow-core fibre, originating from Raman enhancement due to the strong intermodal nonlinear interactions. The spatial and temporal localization of MDSS enables the compression of the broadened pulses at the output to 10.8 fs by simple linear propagation in a piece of fused silica. The high spatiotemporal quality of MDSS is further verified by high-harmonic generation. Our results present new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime. This work also presents a route toward a new class of compact, tunable and high-energy spatiotemporally engineered coherent light sources based on picosecond ytterbium technology.
The formation of multidimensional solitary states through the nonlinear propagation of high-energy pulses in a molecular gas-filled large-core hollow-core fibre is demonstrated, offering new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime. |
doi_str_mv | 10.1038/s41566-020-00699-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473219133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473219133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-99730624226492841d1e3a9b228fb57642b0457f09d1f82f218b1ffc8d78f0a23</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMRvss5PYI1RAkSqxwGzlw05dJXHxJUL996QEwcZ0Nzzvq7uHkGvObjkT6g4lT7OMMmCUsUxrCidkwXOpqVRanP7uKj0nF4g7xlKhARbkYe2bLbW9jc0h6cZ28LXvbI8-9EWbYGj9UMRDgkMxWEx8n2xD24ZPWoVoE-fLaPGSnLmiRXv1M5fk_enxbbWmm9fnl9X9hlaC64FqnQuWgQTIpAYlec2tKHQJoFyZ5pmEksk0d0zX3ClwwFXJnatUnSvHChBLcjP37mP4GC0OZhfGOJ2JBmQugGsuxETBTFUxIEbrzD76bvrBcGaOrszsykyuzLcrc6wWcwgnuG9s_Kv-J_UF46Rrew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473219133</pqid></control><display><type>article</type><title>High-energy multidimensional solitary states in hollow-core fibres</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Safaei, Reza ; Fan, Guangyu ; Kwon, Ojoon ; Légaré, Katherine ; Lassonde, Philippe ; Schmidt, Bruno E. ; Ibrahim, Heide ; Légaré, François</creator><creatorcontrib>Safaei, Reza ; Fan, Guangyu ; Kwon, Ojoon ; Légaré, Katherine ; Lassonde, Philippe ; Schmidt, Bruno E. ; Ibrahim, Heide ; Légaré, François</creatorcontrib><description>Multidimensional solitary states (MDSS)—self-sustained wavepackets—have attracted renewed interest in many different fields of physics. They are of particular importance in nonlinear optics, especially for the nonlinear propagation of ultrashort pulses in multimode fibres, which contain rich spatiotemporal intermodal interactions and dynamics, albeit often in an unstable manner. Here, we report the observation of the formation of highly stable multidimensional solitary states in a molecular gas-filled large-core hollow-core fibre. We experimentally and numerically demonstrate the creation of MDSS by multimillijoule, subpicosecond near-infrared pulses and the underlying physics. We find that the MDSS have a broadband redshifted spectra with an uncommon negative quadratic spectral phase at the output of the hollow-core fibre, originating from Raman enhancement due to the strong intermodal nonlinear interactions. The spatial and temporal localization of MDSS enables the compression of the broadened pulses at the output to 10.8 fs by simple linear propagation in a piece of fused silica. The high spatiotemporal quality of MDSS is further verified by high-harmonic generation. Our results present new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime. This work also presents a route toward a new class of compact, tunable and high-energy spatiotemporally engineered coherent light sources based on picosecond ytterbium technology.
The formation of multidimensional solitary states through the nonlinear propagation of high-energy pulses in a molecular gas-filled large-core hollow-core fibre is demonstrated, offering new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-020-00699-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/400/1118 ; 639/624/400/385 ; 639/624/400/3923 ; 639/624/400/584 ; Applied and Technical Physics ; Broadband ; Coherent light ; Compression ; Energy ; Fibers ; Fused silica ; Harmonic generations ; Intermodal ; Light sources ; Localization ; Molecular gases ; Nonlinear optics ; Optics ; Physics ; Physics and Astronomy ; Propagation ; Pulse propagation ; Quantum Physics ; Silica ; Silicon dioxide ; Wave packets ; Ytterbium</subject><ispartof>Nature photonics, 2020-12, Vol.14 (12), p.733-739</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-99730624226492841d1e3a9b228fb57642b0457f09d1f82f218b1ffc8d78f0a23</citedby><cites>FETCH-LOGICAL-c319t-99730624226492841d1e3a9b228fb57642b0457f09d1f82f218b1ffc8d78f0a23</cites><orcidid>0000-0002-3065-7156 ; 0000-0001-6371-8501 ; 0000-0003-3206-1652 ; 0000-0002-8659-1432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-020-00699-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-020-00699-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Safaei, Reza</creatorcontrib><creatorcontrib>Fan, Guangyu</creatorcontrib><creatorcontrib>Kwon, Ojoon</creatorcontrib><creatorcontrib>Légaré, Katherine</creatorcontrib><creatorcontrib>Lassonde, Philippe</creatorcontrib><creatorcontrib>Schmidt, Bruno E.</creatorcontrib><creatorcontrib>Ibrahim, Heide</creatorcontrib><creatorcontrib>Légaré, François</creatorcontrib><title>High-energy multidimensional solitary states in hollow-core fibres</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>Multidimensional solitary states (MDSS)—self-sustained wavepackets—have attracted renewed interest in many different fields of physics. They are of particular importance in nonlinear optics, especially for the nonlinear propagation of ultrashort pulses in multimode fibres, which contain rich spatiotemporal intermodal interactions and dynamics, albeit often in an unstable manner. Here, we report the observation of the formation of highly stable multidimensional solitary states in a molecular gas-filled large-core hollow-core fibre. We experimentally and numerically demonstrate the creation of MDSS by multimillijoule, subpicosecond near-infrared pulses and the underlying physics. We find that the MDSS have a broadband redshifted spectra with an uncommon negative quadratic spectral phase at the output of the hollow-core fibre, originating from Raman enhancement due to the strong intermodal nonlinear interactions. The spatial and temporal localization of MDSS enables the compression of the broadened pulses at the output to 10.8 fs by simple linear propagation in a piece of fused silica. The high spatiotemporal quality of MDSS is further verified by high-harmonic generation. Our results present new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime. This work also presents a route toward a new class of compact, tunable and high-energy spatiotemporally engineered coherent light sources based on picosecond ytterbium technology.
The formation of multidimensional solitary states through the nonlinear propagation of high-energy pulses in a molecular gas-filled large-core hollow-core fibre is demonstrated, offering new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime.</description><subject>639/624/400/1118</subject><subject>639/624/400/385</subject><subject>639/624/400/3923</subject><subject>639/624/400/584</subject><subject>Applied and Technical Physics</subject><subject>Broadband</subject><subject>Coherent light</subject><subject>Compression</subject><subject>Energy</subject><subject>Fibers</subject><subject>Fused silica</subject><subject>Harmonic generations</subject><subject>Intermodal</subject><subject>Light sources</subject><subject>Localization</subject><subject>Molecular gases</subject><subject>Nonlinear optics</subject><subject>Optics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Propagation</subject><subject>Pulse propagation</subject><subject>Quantum Physics</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Wave packets</subject><subject>Ytterbium</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5giMRvss5PYI1RAkSqxwGzlw05dJXHxJUL996QEwcZ0Nzzvq7uHkGvObjkT6g4lT7OMMmCUsUxrCidkwXOpqVRanP7uKj0nF4g7xlKhARbkYe2bLbW9jc0h6cZ28LXvbI8-9EWbYGj9UMRDgkMxWEx8n2xD24ZPWoVoE-fLaPGSnLmiRXv1M5fk_enxbbWmm9fnl9X9hlaC64FqnQuWgQTIpAYlec2tKHQJoFyZ5pmEksk0d0zX3ClwwFXJnatUnSvHChBLcjP37mP4GC0OZhfGOJ2JBmQugGsuxETBTFUxIEbrzD76bvrBcGaOrszsykyuzLcrc6wWcwgnuG9s_Kv-J_UF46Rrew</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Safaei, Reza</creator><creator>Fan, Guangyu</creator><creator>Kwon, Ojoon</creator><creator>Légaré, Katherine</creator><creator>Lassonde, Philippe</creator><creator>Schmidt, Bruno E.</creator><creator>Ibrahim, Heide</creator><creator>Légaré, François</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3065-7156</orcidid><orcidid>https://orcid.org/0000-0001-6371-8501</orcidid><orcidid>https://orcid.org/0000-0003-3206-1652</orcidid><orcidid>https://orcid.org/0000-0002-8659-1432</orcidid></search><sort><creationdate>20201201</creationdate><title>High-energy multidimensional solitary states in hollow-core fibres</title><author>Safaei, Reza ; Fan, Guangyu ; Kwon, Ojoon ; Légaré, Katherine ; Lassonde, Philippe ; Schmidt, Bruno E. ; Ibrahim, Heide ; Légaré, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-99730624226492841d1e3a9b228fb57642b0457f09d1f82f218b1ffc8d78f0a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/400/1118</topic><topic>639/624/400/385</topic><topic>639/624/400/3923</topic><topic>639/624/400/584</topic><topic>Applied and Technical Physics</topic><topic>Broadband</topic><topic>Coherent light</topic><topic>Compression</topic><topic>Energy</topic><topic>Fibers</topic><topic>Fused silica</topic><topic>Harmonic generations</topic><topic>Intermodal</topic><topic>Light sources</topic><topic>Localization</topic><topic>Molecular gases</topic><topic>Nonlinear optics</topic><topic>Optics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Propagation</topic><topic>Pulse propagation</topic><topic>Quantum Physics</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Wave packets</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safaei, Reza</creatorcontrib><creatorcontrib>Fan, Guangyu</creatorcontrib><creatorcontrib>Kwon, Ojoon</creatorcontrib><creatorcontrib>Légaré, Katherine</creatorcontrib><creatorcontrib>Lassonde, Philippe</creatorcontrib><creatorcontrib>Schmidt, Bruno E.</creatorcontrib><creatorcontrib>Ibrahim, Heide</creatorcontrib><creatorcontrib>Légaré, François</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safaei, Reza</au><au>Fan, Guangyu</au><au>Kwon, Ojoon</au><au>Légaré, Katherine</au><au>Lassonde, Philippe</au><au>Schmidt, Bruno E.</au><au>Ibrahim, Heide</au><au>Légaré, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-energy multidimensional solitary states in hollow-core fibres</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>14</volume><issue>12</issue><spage>733</spage><epage>739</epage><pages>733-739</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Multidimensional solitary states (MDSS)—self-sustained wavepackets—have attracted renewed interest in many different fields of physics. They are of particular importance in nonlinear optics, especially for the nonlinear propagation of ultrashort pulses in multimode fibres, which contain rich spatiotemporal intermodal interactions and dynamics, albeit often in an unstable manner. Here, we report the observation of the formation of highly stable multidimensional solitary states in a molecular gas-filled large-core hollow-core fibre. We experimentally and numerically demonstrate the creation of MDSS by multimillijoule, subpicosecond near-infrared pulses and the underlying physics. We find that the MDSS have a broadband redshifted spectra with an uncommon negative quadratic spectral phase at the output of the hollow-core fibre, originating from Raman enhancement due to the strong intermodal nonlinear interactions. The spatial and temporal localization of MDSS enables the compression of the broadened pulses at the output to 10.8 fs by simple linear propagation in a piece of fused silica. The high spatiotemporal quality of MDSS is further verified by high-harmonic generation. Our results present new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime. This work also presents a route toward a new class of compact, tunable and high-energy spatiotemporally engineered coherent light sources based on picosecond ytterbium technology.
The formation of multidimensional solitary states through the nonlinear propagation of high-energy pulses in a molecular gas-filled large-core hollow-core fibre is demonstrated, offering new opportunities for studying multimodal spatiotemporal dynamics in the high-energy regime.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-020-00699-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3065-7156</orcidid><orcidid>https://orcid.org/0000-0001-6371-8501</orcidid><orcidid>https://orcid.org/0000-0003-3206-1652</orcidid><orcidid>https://orcid.org/0000-0002-8659-1432</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2020-12, Vol.14 (12), p.733-739 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_2473219133 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/624/400/1118 639/624/400/385 639/624/400/3923 639/624/400/584 Applied and Technical Physics Broadband Coherent light Compression Energy Fibers Fused silica Harmonic generations Intermodal Light sources Localization Molecular gases Nonlinear optics Optics Physics Physics and Astronomy Propagation Pulse propagation Quantum Physics Silica Silicon dioxide Wave packets Ytterbium |
title | High-energy multidimensional solitary states in hollow-core fibres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-energy%20multidimensional%20solitary%20states%20in%20hollow-core%20fibres&rft.jtitle=Nature%20photonics&rft.au=Safaei,%20Reza&rft.date=2020-12-01&rft.volume=14&rft.issue=12&rft.spage=733&rft.epage=739&rft.pages=733-739&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-020-00699-2&rft_dat=%3Cproquest_cross%3E2473219133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473219133&rft_id=info:pmid/&rfr_iscdi=true |