Classifiers Protected against Attacks by Fusion of Multi-Branch Perturbed GAN
Deep learning is widely used in classification tasks to achieve advanced performance. However, in the face of well-designed image classifications, such as the Fast Gradient Sign Method (FGSM), there are glaring errors. This paper proposes a new technique to eliminate interference using generative ad...
Gespeichert in:
Veröffentlicht in: | Mobile networks and applications 2020-12, Vol.25 (6), p.2321-2335 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2335 |
---|---|
container_issue | 6 |
container_start_page | 2321 |
container_title | Mobile networks and applications |
container_volume | 25 |
creator | Hu, Jianjun Yu, Mengjing Xu, Qingzhen Gao, Jing |
description | Deep learning is widely used in classification tasks to achieve advanced performance. However, in the face of well-designed image classifications, such as the Fast Gradient Sign Method (FGSM), there are glaring errors. This paper proposes a new technique to eliminate interference using generative adversarial networks (GAN), called multi-branch perturbed generative adversarial networks
(
MBP-GAN). MBP-GAN minimizes the input feature flow graph in generator noise filtering by introducing multi-branch fusion perturbations. This makes the sample of the generator more aware of this perturbation, thereby improving the ability of the generator and discriminator to resist classification against attacks in combat training. Through this kind of training, this model can be used as a defense against arbitrary attacks. Then we design the loss function, so that the generator and the discriminator can keep accurate results for general images and classification against images. We verify our experimental results on the MNIST, F-MNIST and CelebA datasets. The results show that the MBP-GAN can effectively eliminate the interference from the classification against the attack. |
doi_str_mv | 10.1007/s11036-020-01618-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473218784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473218784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-29d095196f425cfb82c990aeab13cdfc153448463aca9cc240b72893f55187b13</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyWmA3-TeyxVLQgtdABJDbLceySUpJiO0P79BiCxMZ073DOd68-AC4JviYYlzeREMwKhClGmBREosMRGBFRUiSJYMd5Z5IhXqjXU3AW4wZjLITkI7Ccbk2MjW9ciHAVuuRscjU0a9O0McFJSsa-R1jt4ayPTdfCzsNlv00Nug2mtW9w5ULqQ5Wd-eTxHJx4s43u4neOwcvs7nl6jxZP84fpZIEsLXFCVNVYCaIKz6mwvpLUKoWNMxVhtvY2v8y55AUz1ihrKcdVSaViXggiywyNwdWQuwvdZ-9i0puuD20-qSkvGc2U5JmiA2VDF2NwXu9C82HCXhOsv2vTQ20616Z_atOHLLFBihlu1y78Rf9jfQEdP2-L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473218784</pqid></control><display><type>article</type><title>Classifiers Protected against Attacks by Fusion of Multi-Branch Perturbed GAN</title><source>SpringerLink Journals</source><creator>Hu, Jianjun ; Yu, Mengjing ; Xu, Qingzhen ; Gao, Jing</creator><creatorcontrib>Hu, Jianjun ; Yu, Mengjing ; Xu, Qingzhen ; Gao, Jing</creatorcontrib><description>Deep learning is widely used in classification tasks to achieve advanced performance. However, in the face of well-designed image classifications, such as the Fast Gradient Sign Method (FGSM), there are glaring errors. This paper proposes a new technique to eliminate interference using generative adversarial networks (GAN), called multi-branch perturbed generative adversarial networks
(
MBP-GAN). MBP-GAN minimizes the input feature flow graph in generator noise filtering by introducing multi-branch fusion perturbations. This makes the sample of the generator more aware of this perturbation, thereby improving the ability of the generator and discriminator to resist classification against attacks in combat training. Through this kind of training, this model can be used as a defense against arbitrary attacks. Then we design the loss function, so that the generator and the discriminator can keep accurate results for general images and classification against images. We verify our experimental results on the MNIST, F-MNIST and CelebA datasets. The results show that the MBP-GAN can effectively eliminate the interference from the classification against the attack.</description><identifier>ISSN: 1383-469X</identifier><identifier>EISSN: 1572-8153</identifier><identifier>DOI: 10.1007/s11036-020-01618-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Communications Engineering ; Computer Communication Networks ; Electrical Engineering ; Engineering ; Generative adversarial networks ; Image classification ; Interference ; IT in Business ; Machine learning ; Networks ; Perturbation ; Training</subject><ispartof>Mobile networks and applications, 2020-12, Vol.25 (6), p.2321-2335</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-29d095196f425cfb82c990aeab13cdfc153448463aca9cc240b72893f55187b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11036-020-01618-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11036-020-01618-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hu, Jianjun</creatorcontrib><creatorcontrib>Yu, Mengjing</creatorcontrib><creatorcontrib>Xu, Qingzhen</creatorcontrib><creatorcontrib>Gao, Jing</creatorcontrib><title>Classifiers Protected against Attacks by Fusion of Multi-Branch Perturbed GAN</title><title>Mobile networks and applications</title><addtitle>Mobile Netw Appl</addtitle><description>Deep learning is widely used in classification tasks to achieve advanced performance. However, in the face of well-designed image classifications, such as the Fast Gradient Sign Method (FGSM), there are glaring errors. This paper proposes a new technique to eliminate interference using generative adversarial networks (GAN), called multi-branch perturbed generative adversarial networks
(
MBP-GAN). MBP-GAN minimizes the input feature flow graph in generator noise filtering by introducing multi-branch fusion perturbations. This makes the sample of the generator more aware of this perturbation, thereby improving the ability of the generator and discriminator to resist classification against attacks in combat training. Through this kind of training, this model can be used as a defense against arbitrary attacks. Then we design the loss function, so that the generator and the discriminator can keep accurate results for general images and classification against images. We verify our experimental results on the MNIST, F-MNIST and CelebA datasets. The results show that the MBP-GAN can effectively eliminate the interference from the classification against the attack.</description><subject>Classification</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Generative adversarial networks</subject><subject>Image classification</subject><subject>Interference</subject><subject>IT in Business</subject><subject>Machine learning</subject><subject>Networks</subject><subject>Perturbation</subject><subject>Training</subject><issn>1383-469X</issn><issn>1572-8153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kL1OwzAURi0EEqXwAkyWmA3-TeyxVLQgtdABJDbLceySUpJiO0P79BiCxMZ073DOd68-AC4JviYYlzeREMwKhClGmBREosMRGBFRUiSJYMd5Z5IhXqjXU3AW4wZjLITkI7Ccbk2MjW9ciHAVuuRscjU0a9O0McFJSsa-R1jt4ayPTdfCzsNlv00Nug2mtW9w5ULqQ5Wd-eTxHJx4s43u4neOwcvs7nl6jxZP84fpZIEsLXFCVNVYCaIKz6mwvpLUKoWNMxVhtvY2v8y55AUz1ihrKcdVSaViXggiywyNwdWQuwvdZ-9i0puuD20-qSkvGc2U5JmiA2VDF2NwXu9C82HCXhOsv2vTQ20616Z_atOHLLFBihlu1y78Rf9jfQEdP2-L</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Hu, Jianjun</creator><creator>Yu, Mengjing</creator><creator>Xu, Qingzhen</creator><creator>Gao, Jing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20201201</creationdate><title>Classifiers Protected against Attacks by Fusion of Multi-Branch Perturbed GAN</title><author>Hu, Jianjun ; Yu, Mengjing ; Xu, Qingzhen ; Gao, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-29d095196f425cfb82c990aeab13cdfc153448463aca9cc240b72893f55187b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Generative adversarial networks</topic><topic>Image classification</topic><topic>Interference</topic><topic>IT in Business</topic><topic>Machine learning</topic><topic>Networks</topic><topic>Perturbation</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jianjun</creatorcontrib><creatorcontrib>Yu, Mengjing</creatorcontrib><creatorcontrib>Xu, Qingzhen</creatorcontrib><creatorcontrib>Gao, Jing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Mobile networks and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jianjun</au><au>Yu, Mengjing</au><au>Xu, Qingzhen</au><au>Gao, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classifiers Protected against Attacks by Fusion of Multi-Branch Perturbed GAN</atitle><jtitle>Mobile networks and applications</jtitle><stitle>Mobile Netw Appl</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>25</volume><issue>6</issue><spage>2321</spage><epage>2335</epage><pages>2321-2335</pages><issn>1383-469X</issn><eissn>1572-8153</eissn><abstract>Deep learning is widely used in classification tasks to achieve advanced performance. However, in the face of well-designed image classifications, such as the Fast Gradient Sign Method (FGSM), there are glaring errors. This paper proposes a new technique to eliminate interference using generative adversarial networks (GAN), called multi-branch perturbed generative adversarial networks
(
MBP-GAN). MBP-GAN minimizes the input feature flow graph in generator noise filtering by introducing multi-branch fusion perturbations. This makes the sample of the generator more aware of this perturbation, thereby improving the ability of the generator and discriminator to resist classification against attacks in combat training. Through this kind of training, this model can be used as a defense against arbitrary attacks. Then we design the loss function, so that the generator and the discriminator can keep accurate results for general images and classification against images. We verify our experimental results on the MNIST, F-MNIST and CelebA datasets. The results show that the MBP-GAN can effectively eliminate the interference from the classification against the attack.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11036-020-01618-z</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1383-469X |
ispartof | Mobile networks and applications, 2020-12, Vol.25 (6), p.2321-2335 |
issn | 1383-469X 1572-8153 |
language | eng |
recordid | cdi_proquest_journals_2473218784 |
source | SpringerLink Journals |
subjects | Classification Communications Engineering Computer Communication Networks Electrical Engineering Engineering Generative adversarial networks Image classification Interference IT in Business Machine learning Networks Perturbation Training |
title | Classifiers Protected against Attacks by Fusion of Multi-Branch Perturbed GAN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classifiers%20Protected%20against%20Attacks%20by%20Fusion%20of%20Multi-Branch%20Perturbed%20GAN&rft.jtitle=Mobile%20networks%20and%20applications&rft.au=Hu,%20Jianjun&rft.date=2020-12-01&rft.volume=25&rft.issue=6&rft.spage=2321&rft.epage=2335&rft.pages=2321-2335&rft.issn=1383-469X&rft.eissn=1572-8153&rft_id=info:doi/10.1007/s11036-020-01618-z&rft_dat=%3Cproquest_cross%3E2473218784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473218784&rft_id=info:pmid/&rfr_iscdi=true |