Classifiers Protected against Attacks by Fusion of Multi-Branch Perturbed GAN

Deep learning is widely used in classification tasks to achieve advanced performance. However, in the face of well-designed image classifications, such as the Fast Gradient Sign Method (FGSM), there are glaring errors. This paper proposes a new technique to eliminate interference using generative ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile networks and applications 2020-12, Vol.25 (6), p.2321-2335
Hauptverfasser: Hu, Jianjun, Yu, Mengjing, Xu, Qingzhen, Gao, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2335
container_issue 6
container_start_page 2321
container_title Mobile networks and applications
container_volume 25
creator Hu, Jianjun
Yu, Mengjing
Xu, Qingzhen
Gao, Jing
description Deep learning is widely used in classification tasks to achieve advanced performance. However, in the face of well-designed image classifications, such as the Fast Gradient Sign Method (FGSM), there are glaring errors. This paper proposes a new technique to eliminate interference using generative adversarial networks (GAN), called multi-branch perturbed generative adversarial networks ( MBP-GAN). MBP-GAN minimizes the input feature flow graph in generator noise filtering by introducing multi-branch fusion perturbations. This makes the sample of the generator more aware of this perturbation, thereby improving the ability of the generator and discriminator to resist classification against attacks in combat training. Through this kind of training, this model can be used as a defense against arbitrary attacks. Then we design the loss function, so that the generator and the discriminator can keep accurate results for general images and classification against images. We verify our experimental results on the MNIST, F-MNIST and CelebA datasets. The results show that the MBP-GAN can effectively eliminate the interference from the classification against the attack.
doi_str_mv 10.1007/s11036-020-01618-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473218784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473218784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-29d095196f425cfb82c990aeab13cdfc153448463aca9cc240b72893f55187b13</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyWmA3-TeyxVLQgtdABJDbLceySUpJiO0P79BiCxMZ073DOd68-AC4JviYYlzeREMwKhClGmBREosMRGBFRUiSJYMd5Z5IhXqjXU3AW4wZjLITkI7Ccbk2MjW9ciHAVuuRscjU0a9O0McFJSsa-R1jt4ayPTdfCzsNlv00Nug2mtW9w5ULqQ5Wd-eTxHJx4s43u4neOwcvs7nl6jxZP84fpZIEsLXFCVNVYCaIKz6mwvpLUKoWNMxVhtvY2v8y55AUz1ihrKcdVSaViXggiywyNwdWQuwvdZ-9i0puuD20-qSkvGc2U5JmiA2VDF2NwXu9C82HCXhOsv2vTQ20616Z_atOHLLFBihlu1y78Rf9jfQEdP2-L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473218784</pqid></control><display><type>article</type><title>Classifiers Protected against Attacks by Fusion of Multi-Branch Perturbed GAN</title><source>SpringerLink Journals</source><creator>Hu, Jianjun ; Yu, Mengjing ; Xu, Qingzhen ; Gao, Jing</creator><creatorcontrib>Hu, Jianjun ; Yu, Mengjing ; Xu, Qingzhen ; Gao, Jing</creatorcontrib><description>Deep learning is widely used in classification tasks to achieve advanced performance. However, in the face of well-designed image classifications, such as the Fast Gradient Sign Method (FGSM), there are glaring errors. This paper proposes a new technique to eliminate interference using generative adversarial networks (GAN), called multi-branch perturbed generative adversarial networks ( MBP-GAN). MBP-GAN minimizes the input feature flow graph in generator noise filtering by introducing multi-branch fusion perturbations. This makes the sample of the generator more aware of this perturbation, thereby improving the ability of the generator and discriminator to resist classification against attacks in combat training. Through this kind of training, this model can be used as a defense against arbitrary attacks. Then we design the loss function, so that the generator and the discriminator can keep accurate results for general images and classification against images. We verify our experimental results on the MNIST, F-MNIST and CelebA datasets. The results show that the MBP-GAN can effectively eliminate the interference from the classification against the attack.</description><identifier>ISSN: 1383-469X</identifier><identifier>EISSN: 1572-8153</identifier><identifier>DOI: 10.1007/s11036-020-01618-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Communications Engineering ; Computer Communication Networks ; Electrical Engineering ; Engineering ; Generative adversarial networks ; Image classification ; Interference ; IT in Business ; Machine learning ; Networks ; Perturbation ; Training</subject><ispartof>Mobile networks and applications, 2020-12, Vol.25 (6), p.2321-2335</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-29d095196f425cfb82c990aeab13cdfc153448463aca9cc240b72893f55187b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11036-020-01618-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11036-020-01618-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hu, Jianjun</creatorcontrib><creatorcontrib>Yu, Mengjing</creatorcontrib><creatorcontrib>Xu, Qingzhen</creatorcontrib><creatorcontrib>Gao, Jing</creatorcontrib><title>Classifiers Protected against Attacks by Fusion of Multi-Branch Perturbed GAN</title><title>Mobile networks and applications</title><addtitle>Mobile Netw Appl</addtitle><description>Deep learning is widely used in classification tasks to achieve advanced performance. However, in the face of well-designed image classifications, such as the Fast Gradient Sign Method (FGSM), there are glaring errors. This paper proposes a new technique to eliminate interference using generative adversarial networks (GAN), called multi-branch perturbed generative adversarial networks ( MBP-GAN). MBP-GAN minimizes the input feature flow graph in generator noise filtering by introducing multi-branch fusion perturbations. This makes the sample of the generator more aware of this perturbation, thereby improving the ability of the generator and discriminator to resist classification against attacks in combat training. Through this kind of training, this model can be used as a defense against arbitrary attacks. Then we design the loss function, so that the generator and the discriminator can keep accurate results for general images and classification against images. We verify our experimental results on the MNIST, F-MNIST and CelebA datasets. The results show that the MBP-GAN can effectively eliminate the interference from the classification against the attack.</description><subject>Classification</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Generative adversarial networks</subject><subject>Image classification</subject><subject>Interference</subject><subject>IT in Business</subject><subject>Machine learning</subject><subject>Networks</subject><subject>Perturbation</subject><subject>Training</subject><issn>1383-469X</issn><issn>1572-8153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kL1OwzAURi0EEqXwAkyWmA3-TeyxVLQgtdABJDbLceySUpJiO0P79BiCxMZ073DOd68-AC4JviYYlzeREMwKhClGmBREosMRGBFRUiSJYMd5Z5IhXqjXU3AW4wZjLITkI7Ccbk2MjW9ciHAVuuRscjU0a9O0McFJSsa-R1jt4ayPTdfCzsNlv00Nug2mtW9w5ULqQ5Wd-eTxHJx4s43u4neOwcvs7nl6jxZP84fpZIEsLXFCVNVYCaIKz6mwvpLUKoWNMxVhtvY2v8y55AUz1ihrKcdVSaViXggiywyNwdWQuwvdZ-9i0puuD20-qSkvGc2U5JmiA2VDF2NwXu9C82HCXhOsv2vTQ20616Z_atOHLLFBihlu1y78Rf9jfQEdP2-L</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Hu, Jianjun</creator><creator>Yu, Mengjing</creator><creator>Xu, Qingzhen</creator><creator>Gao, Jing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20201201</creationdate><title>Classifiers Protected against Attacks by Fusion of Multi-Branch Perturbed GAN</title><author>Hu, Jianjun ; Yu, Mengjing ; Xu, Qingzhen ; Gao, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-29d095196f425cfb82c990aeab13cdfc153448463aca9cc240b72893f55187b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Generative adversarial networks</topic><topic>Image classification</topic><topic>Interference</topic><topic>IT in Business</topic><topic>Machine learning</topic><topic>Networks</topic><topic>Perturbation</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jianjun</creatorcontrib><creatorcontrib>Yu, Mengjing</creatorcontrib><creatorcontrib>Xu, Qingzhen</creatorcontrib><creatorcontrib>Gao, Jing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Mobile networks and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jianjun</au><au>Yu, Mengjing</au><au>Xu, Qingzhen</au><au>Gao, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classifiers Protected against Attacks by Fusion of Multi-Branch Perturbed GAN</atitle><jtitle>Mobile networks and applications</jtitle><stitle>Mobile Netw Appl</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>25</volume><issue>6</issue><spage>2321</spage><epage>2335</epage><pages>2321-2335</pages><issn>1383-469X</issn><eissn>1572-8153</eissn><abstract>Deep learning is widely used in classification tasks to achieve advanced performance. However, in the face of well-designed image classifications, such as the Fast Gradient Sign Method (FGSM), there are glaring errors. This paper proposes a new technique to eliminate interference using generative adversarial networks (GAN), called multi-branch perturbed generative adversarial networks ( MBP-GAN). MBP-GAN minimizes the input feature flow graph in generator noise filtering by introducing multi-branch fusion perturbations. This makes the sample of the generator more aware of this perturbation, thereby improving the ability of the generator and discriminator to resist classification against attacks in combat training. Through this kind of training, this model can be used as a defense against arbitrary attacks. Then we design the loss function, so that the generator and the discriminator can keep accurate results for general images and classification against images. We verify our experimental results on the MNIST, F-MNIST and CelebA datasets. The results show that the MBP-GAN can effectively eliminate the interference from the classification against the attack.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11036-020-01618-z</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1383-469X
ispartof Mobile networks and applications, 2020-12, Vol.25 (6), p.2321-2335
issn 1383-469X
1572-8153
language eng
recordid cdi_proquest_journals_2473218784
source SpringerLink Journals
subjects Classification
Communications Engineering
Computer Communication Networks
Electrical Engineering
Engineering
Generative adversarial networks
Image classification
Interference
IT in Business
Machine learning
Networks
Perturbation
Training
title Classifiers Protected against Attacks by Fusion of Multi-Branch Perturbed GAN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classifiers%20Protected%20against%20Attacks%20by%20Fusion%20of%20Multi-Branch%20Perturbed%20GAN&rft.jtitle=Mobile%20networks%20and%20applications&rft.au=Hu,%20Jianjun&rft.date=2020-12-01&rft.volume=25&rft.issue=6&rft.spage=2321&rft.epage=2335&rft.pages=2321-2335&rft.issn=1383-469X&rft.eissn=1572-8153&rft_id=info:doi/10.1007/s11036-020-01618-z&rft_dat=%3Cproquest_cross%3E2473218784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473218784&rft_id=info:pmid/&rfr_iscdi=true