High-power portable terahertz laser systems

Terahertz (THz) frequencies remain among the least utilized in the electromagnetic spectrum, largely due to the lack of powerful and compact sources. The invention of THz quantum cascade lasers (QCLs) was a major breakthrough to bridge the so-called ‘THz gap’ between semiconductor electronic and pho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2021-01, Vol.15 (1), p.16-20
Hauptverfasser: Khalatpour, Ali, Paulsen, Andrew K., Deimert, Chris, Wasilewski, Zbig R., Hu, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 16
container_title Nature photonics
container_volume 15
creator Khalatpour, Ali
Paulsen, Andrew K.
Deimert, Chris
Wasilewski, Zbig R.
Hu, Qing
description Terahertz (THz) frequencies remain among the least utilized in the electromagnetic spectrum, largely due to the lack of powerful and compact sources. The invention of THz quantum cascade lasers (QCLs) was a major breakthrough to bridge the so-called ‘THz gap’ between semiconductor electronic and photonic sources. However, their demanding cooling requirement has confined the technology to a laboratory environment. A portable and high-power THz laser system will have a qualitative impact on applications in medical imaging, communications, quality control, security and biochemistry. Here, by adopting a design strategy that achieves a clean three-level system, we have developed THz QCLs (at ~4 THz) with a maximum operating temperature of 250 K. The high operating temperature enables portable THz systems to perform real-time imaging with a room-temperature THz camera, as well as fast spectral measurements with a room-temperature detector. GaAs-based terahertz quantum cascade lasers emitting around 4 THz are demonstrated up to 250 K without a magnetic field. To elevate the operation temperature, carrier leakage channels are reduced by carefully designing the quantum well structures.
doi_str_mv 10.1038/s41566-020-00707-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2473187900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473187900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8a581061d677f3fcfee8d0ca7ae0dfed450ae2df9feb8f3ead7f0bd8af5c2f7c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8FjxKdJE2THGVRV1jwoueQJpP9oLutSRdZf73Vit48zcA87zvwEHLJ4IaB0Le5ZLKqKHCgAAoUlUdkwlRpaKmNOP7dtTwlZzlvAKQwnE_I9Xy9XNGufcdUdG3qXd1g0WNyK0z9R9G4PBzyIfe4zefkJLom48XPnJLXh_uX2Zwunh-fZncL6gUzPdVOagYVC5VSUUQfEXUA75RDCBFDKcEhD9FErHUU6IKKUAftovQ8Ki-m5Grs7VL7tsfc2027T7vhpeWlEkwrAzBQfKR8anNOGG2X1luXDpaB_ZJiRyl2kGK_pVg5hMQYygO8W2L6q_4n9QmUYWXz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473187900</pqid></control><display><type>article</type><title>High-power portable terahertz laser systems</title><source>SpringerLink Journals</source><source>Nature</source><creator>Khalatpour, Ali ; Paulsen, Andrew K. ; Deimert, Chris ; Wasilewski, Zbig R. ; Hu, Qing</creator><creatorcontrib>Khalatpour, Ali ; Paulsen, Andrew K. ; Deimert, Chris ; Wasilewski, Zbig R. ; Hu, Qing</creatorcontrib><description>Terahertz (THz) frequencies remain among the least utilized in the electromagnetic spectrum, largely due to the lack of powerful and compact sources. The invention of THz quantum cascade lasers (QCLs) was a major breakthrough to bridge the so-called ‘THz gap’ between semiconductor electronic and photonic sources. However, their demanding cooling requirement has confined the technology to a laboratory environment. A portable and high-power THz laser system will have a qualitative impact on applications in medical imaging, communications, quality control, security and biochemistry. Here, by adopting a design strategy that achieves a clean three-level system, we have developed THz QCLs (at ~4 THz) with a maximum operating temperature of 250 K. The high operating temperature enables portable THz systems to perform real-time imaging with a room-temperature THz camera, as well as fast spectral measurements with a room-temperature detector. GaAs-based terahertz quantum cascade lasers emitting around 4 THz are demonstrated up to 250 K without a magnetic field. To elevate the operation temperature, carrier leakage channels are reduced by carefully designing the quantum well structures.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-020-00707-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/301/1005 ; 639/624/1020 ; 639/766/119 ; 639/766/400 ; 639/925/927 ; Applied and Technical Physics ; Electrons ; High temperature ; Lasers ; Magnetic fields ; Medical imaging ; Operating temperature ; Physics ; Physics and Astronomy ; Portability ; Quality control ; Quantum cascade lasers ; Quantum Physics ; Quantum wells ; Room temperature ; Terahertz frequencies</subject><ispartof>Nature photonics, 2021-01, Vol.15 (1), p.16-20</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8a581061d677f3fcfee8d0ca7ae0dfed450ae2df9feb8f3ead7f0bd8af5c2f7c3</citedby><cites>FETCH-LOGICAL-c319t-8a581061d677f3fcfee8d0ca7ae0dfed450ae2df9feb8f3ead7f0bd8af5c2f7c3</cites><orcidid>0000-0003-1982-4053 ; 0000-0002-8362-4198 ; 0000-0001-7116-5863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-020-00707-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-020-00707-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Khalatpour, Ali</creatorcontrib><creatorcontrib>Paulsen, Andrew K.</creatorcontrib><creatorcontrib>Deimert, Chris</creatorcontrib><creatorcontrib>Wasilewski, Zbig R.</creatorcontrib><creatorcontrib>Hu, Qing</creatorcontrib><title>High-power portable terahertz laser systems</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>Terahertz (THz) frequencies remain among the least utilized in the electromagnetic spectrum, largely due to the lack of powerful and compact sources. The invention of THz quantum cascade lasers (QCLs) was a major breakthrough to bridge the so-called ‘THz gap’ between semiconductor electronic and photonic sources. However, their demanding cooling requirement has confined the technology to a laboratory environment. A portable and high-power THz laser system will have a qualitative impact on applications in medical imaging, communications, quality control, security and biochemistry. Here, by adopting a design strategy that achieves a clean three-level system, we have developed THz QCLs (at ~4 THz) with a maximum operating temperature of 250 K. The high operating temperature enables portable THz systems to perform real-time imaging with a room-temperature THz camera, as well as fast spectral measurements with a room-temperature detector. GaAs-based terahertz quantum cascade lasers emitting around 4 THz are demonstrated up to 250 K without a magnetic field. To elevate the operation temperature, carrier leakage channels are reduced by carefully designing the quantum well structures.</description><subject>140/125</subject><subject>639/301/1005</subject><subject>639/624/1020</subject><subject>639/766/119</subject><subject>639/766/400</subject><subject>639/925/927</subject><subject>Applied and Technical Physics</subject><subject>Electrons</subject><subject>High temperature</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>Medical imaging</subject><subject>Operating temperature</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Portability</subject><subject>Quality control</subject><subject>Quantum cascade lasers</subject><subject>Quantum Physics</subject><subject>Quantum wells</subject><subject>Room temperature</subject><subject>Terahertz frequencies</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8FjxKdJE2THGVRV1jwoueQJpP9oLutSRdZf73Vit48zcA87zvwEHLJ4IaB0Le5ZLKqKHCgAAoUlUdkwlRpaKmNOP7dtTwlZzlvAKQwnE_I9Xy9XNGufcdUdG3qXd1g0WNyK0z9R9G4PBzyIfe4zefkJLom48XPnJLXh_uX2Zwunh-fZncL6gUzPdVOagYVC5VSUUQfEXUA75RDCBFDKcEhD9FErHUU6IKKUAftovQ8Ki-m5Grs7VL7tsfc2027T7vhpeWlEkwrAzBQfKR8anNOGG2X1luXDpaB_ZJiRyl2kGK_pVg5hMQYygO8W2L6q_4n9QmUYWXz</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Khalatpour, Ali</creator><creator>Paulsen, Andrew K.</creator><creator>Deimert, Chris</creator><creator>Wasilewski, Zbig R.</creator><creator>Hu, Qing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-1982-4053</orcidid><orcidid>https://orcid.org/0000-0002-8362-4198</orcidid><orcidid>https://orcid.org/0000-0001-7116-5863</orcidid></search><sort><creationdate>20210101</creationdate><title>High-power portable terahertz laser systems</title><author>Khalatpour, Ali ; Paulsen, Andrew K. ; Deimert, Chris ; Wasilewski, Zbig R. ; Hu, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8a581061d677f3fcfee8d0ca7ae0dfed450ae2df9feb8f3ead7f0bd8af5c2f7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/125</topic><topic>639/301/1005</topic><topic>639/624/1020</topic><topic>639/766/119</topic><topic>639/766/400</topic><topic>639/925/927</topic><topic>Applied and Technical Physics</topic><topic>Electrons</topic><topic>High temperature</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>Medical imaging</topic><topic>Operating temperature</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Portability</topic><topic>Quality control</topic><topic>Quantum cascade lasers</topic><topic>Quantum Physics</topic><topic>Quantum wells</topic><topic>Room temperature</topic><topic>Terahertz frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalatpour, Ali</creatorcontrib><creatorcontrib>Paulsen, Andrew K.</creatorcontrib><creatorcontrib>Deimert, Chris</creatorcontrib><creatorcontrib>Wasilewski, Zbig R.</creatorcontrib><creatorcontrib>Hu, Qing</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalatpour, Ali</au><au>Paulsen, Andrew K.</au><au>Deimert, Chris</au><au>Wasilewski, Zbig R.</au><au>Hu, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-power portable terahertz laser systems</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>15</volume><issue>1</issue><spage>16</spage><epage>20</epage><pages>16-20</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Terahertz (THz) frequencies remain among the least utilized in the electromagnetic spectrum, largely due to the lack of powerful and compact sources. The invention of THz quantum cascade lasers (QCLs) was a major breakthrough to bridge the so-called ‘THz gap’ between semiconductor electronic and photonic sources. However, their demanding cooling requirement has confined the technology to a laboratory environment. A portable and high-power THz laser system will have a qualitative impact on applications in medical imaging, communications, quality control, security and biochemistry. Here, by adopting a design strategy that achieves a clean three-level system, we have developed THz QCLs (at ~4 THz) with a maximum operating temperature of 250 K. The high operating temperature enables portable THz systems to perform real-time imaging with a room-temperature THz camera, as well as fast spectral measurements with a room-temperature detector. GaAs-based terahertz quantum cascade lasers emitting around 4 THz are demonstrated up to 250 K without a magnetic field. To elevate the operation temperature, carrier leakage channels are reduced by carefully designing the quantum well structures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-020-00707-5</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1982-4053</orcidid><orcidid>https://orcid.org/0000-0002-8362-4198</orcidid><orcidid>https://orcid.org/0000-0001-7116-5863</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2021-01, Vol.15 (1), p.16-20
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2473187900
source SpringerLink Journals; Nature
subjects 140/125
639/301/1005
639/624/1020
639/766/119
639/766/400
639/925/927
Applied and Technical Physics
Electrons
High temperature
Lasers
Magnetic fields
Medical imaging
Operating temperature
Physics
Physics and Astronomy
Portability
Quality control
Quantum cascade lasers
Quantum Physics
Quantum wells
Room temperature
Terahertz frequencies
title High-power portable terahertz laser systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A47%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-power%20portable%20terahertz%20laser%20systems&rft.jtitle=Nature%20photonics&rft.au=Khalatpour,%20Ali&rft.date=2021-01-01&rft.volume=15&rft.issue=1&rft.spage=16&rft.epage=20&rft.pages=16-20&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-020-00707-5&rft_dat=%3Cproquest_cross%3E2473187900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473187900&rft_id=info:pmid/&rfr_iscdi=true