Experimental Investigation of Hydraulic Fracturing and Stress Sensitivity of Fracture Permeability Under Changing Polyaxial Stress Conditions
Understanding and predicting fracture propagation and subsequent fluid flow characteristics is critical to geoenergy technologies that engineer and/or utilize favorable geological conditions to store or extract fluids from the subsurface. Fracture permeability decreases nonlinearly with increasing n...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2020-12, Vol.125 (12), p.n/a, Article 2020 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Journal of geophysical research. Solid earth |
container_volume | 125 |
creator | Fraser‐Harris, A. P. McDermott, C. I. Couples, G. D. Edlmann, K. Lightbody, A. Cartwright‐Taylor, A. Kendrick, J. E. Brondolo, F. Fazio, M. Sauter, M. |
description | Understanding and predicting fracture propagation and subsequent fluid flow characteristics is critical to geoenergy technologies that engineer and/or utilize favorable geological conditions to store or extract fluids from the subsurface. Fracture permeability decreases nonlinearly with increasing normal stress, but the relationship between shear displacement and fracture permeability is less well understood. We utilize the new Geo‐Reservoir Experimental Analogue Technology (GREAT cell), which can apply polyaxial stress states and realistic reservoir temperatures and pressures to cylindrical samples and has the unique capability to alter both the magnitude and orientation of the radial stress field by increments of 11.25° during an experiment. We load synthetic analogue materials and real rock samples to stress conditions representative of 500–1,000 m depth, investigate the hydraulic stimulation process, and then conduct flow experiments while changing the fluid pressure and the orientation of the intermediate and minimum principal stresses. High‐resolution circumferential strain measurements combined with fluid pressure data indicate fracture propagation can be both stable (no fluid pressure drop) and unstable (fluid pressure drop). The induced fractures exhibit both opening and shear displacements during their creation and/or during fluid flow with changing radial stress states. Flow tests during radial stress field rotation reveal that fracture normal effective stress has first‐order control on fracture permeability but increasing fracture offset can lead to elevated permeabilities at maximum shear stress. The results have implications for our conceptual understanding of fracture propagation as well as fluid flow and deformation around fractures.
Key Points
Hydraulic stimulation, monitored with fiber optic strain sensors, shows both stable and unstable fracture propagation
Controlled polyaxial stress with rotatable radial stresses are used to interrogate normal and shear stress controls on fracture fluid flow
Fracture normal effective stress exerts first‐order control on fracture permeability but increasing offset can lead to elevated permeability |
doi_str_mv | 10.1029/2020JB020044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2473122427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473122427</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5047-1bfe190300ba4663d7d80cd67a4df10bcb46fd138095e6644d414f98b5fff06c3</originalsourceid><addsrcrecordid>eNqNkctu3SAQhq2qlRql2fUBULtsT8vN2F42Vq6KlCiXNcIwnBA5cAo4jR-i71zccxR1FZUFjOD7Z4b5q-ojwd8Ipt13iik-Pywb5vxNtUeJ6FYdq8Xbl5iw99VBSg-4rLZcEb5X_T563kB0j-CzGtGZf4KU3VplFzwKFp3OJqppdBodR6XzFJ1fI-UNuskRUkI34JPL7snlecF3EKAriI-gBjcuD3feQET9vfLrRX4Vxlk9u1Jul6QP3rilYvpQvbNqTHCwO_eru-Oj2_50dXF5ctb_uFipGvNmRQYLpMMM40FxIZhpTIu1EY3ixhI86IELawhrcVeDEJwbTrjt2qG21mKh2X71aZs3lN_KpF0Gfa-D96CzJI1o65YW6PMW2sTwcypzkQ9hir70JSlvGKGU06ZQX7eUjiGlCFZuyjhVnCXBcjFG_mtMwdst_guGYEtl8BpeJMUYgVnpWJSIst7lv070YfK5SL_8v7TQbEe7EeZXm5LnJ9eHNa9Fw_4AcPqxXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473122427</pqid></control><display><type>article</type><title>Experimental Investigation of Hydraulic Fracturing and Stress Sensitivity of Fracture Permeability Under Changing Polyaxial Stress Conditions</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Wiley Online Library (Open Access Collection)</source><creator>Fraser‐Harris, A. P. ; McDermott, C. I. ; Couples, G. D. ; Edlmann, K. ; Lightbody, A. ; Cartwright‐Taylor, A. ; Kendrick, J. E. ; Brondolo, F. ; Fazio, M. ; Sauter, M.</creator><creatorcontrib>Fraser‐Harris, A. P. ; McDermott, C. I. ; Couples, G. D. ; Edlmann, K. ; Lightbody, A. ; Cartwright‐Taylor, A. ; Kendrick, J. E. ; Brondolo, F. ; Fazio, M. ; Sauter, M. ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>Understanding and predicting fracture propagation and subsequent fluid flow characteristics is critical to geoenergy technologies that engineer and/or utilize favorable geological conditions to store or extract fluids from the subsurface. Fracture permeability decreases nonlinearly with increasing normal stress, but the relationship between shear displacement and fracture permeability is less well understood. We utilize the new Geo‐Reservoir Experimental Analogue Technology (GREAT cell), which can apply polyaxial stress states and realistic reservoir temperatures and pressures to cylindrical samples and has the unique capability to alter both the magnitude and orientation of the radial stress field by increments of 11.25° during an experiment. We load synthetic analogue materials and real rock samples to stress conditions representative of 500–1,000 m depth, investigate the hydraulic stimulation process, and then conduct flow experiments while changing the fluid pressure and the orientation of the intermediate and minimum principal stresses. High‐resolution circumferential strain measurements combined with fluid pressure data indicate fracture propagation can be both stable (no fluid pressure drop) and unstable (fluid pressure drop). The induced fractures exhibit both opening and shear displacements during their creation and/or during fluid flow with changing radial stress states. Flow tests during radial stress field rotation reveal that fracture normal effective stress has first‐order control on fracture permeability but increasing fracture offset can lead to elevated permeabilities at maximum shear stress. The results have implications for our conceptual understanding of fracture propagation as well as fluid flow and deformation around fractures.
Key Points
Hydraulic stimulation, monitored with fiber optic strain sensors, shows both stable and unstable fracture propagation
Controlled polyaxial stress with rotatable radial stresses are used to interrogate normal and shear stress controls on fracture fluid flow
Fracture normal effective stress exerts first‐order control on fracture permeability but increasing offset can lead to elevated permeability</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2020JB020044</identifier><language>eng</language><publisher>WASHINGTON: Amer Geophysical Union</publisher><subject>Crack propagation ; Deformation ; Effective stress ; Flow characteristics ; Fluid dynamics ; Fluid flow ; Fluid pressure ; Fluids ; fracture fluid flow ; Fracture mechanics ; Fracture permeability ; Geochemistry & Geophysics ; Geophysics ; GEOSCIENCES ; Hydraulic fracturing ; hydraulic stimulation ; Mechanical stimuli ; Orientation ; Permeability ; Physical Sciences ; polyaxial stress ; Pressure ; Pressure data ; Pressure drop ; Propagation ; Reservoir temperatures ; Reservoirs ; Science & Technology ; Sediment samples ; Shear stress ; Stress distribution ; Stress propagation ; triaxial stress ; true‐triaxial stress</subject><ispartof>Journal of geophysical research. Solid earth, 2020-12, Vol.125 (12), p.n/a, Article 2020</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000603664600023</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a5047-1bfe190300ba4663d7d80cd67a4df10bcb46fd138095e6644d414f98b5fff06c3</citedby><cites>FETCH-LOGICAL-a5047-1bfe190300ba4663d7d80cd67a4df10bcb46fd138095e6644d414f98b5fff06c3</cites><orcidid>0000-0001-6039-6973 ; 0000-0001-5106-3587 ; 0000-0001-6158-5063 ; 0000-0001-7805-4576 ; 0000-0002-8917-8117 ; 0000-0001-5787-2502 ; 0000-0002-7837-0859 ; 0000-0001-8379-6291 ; 0000000157872502 ; 0000000161585063 ; 0000000289178117 ; 0000000160396973 ; 0000000178054576 ; 0000000278370859 ; 0000000151063587 ; 0000000183796291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020JB020044$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020JB020044$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,1434,27929,27930,28253,45579,45580,46414,46838</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1768582$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fraser‐Harris, A. P.</creatorcontrib><creatorcontrib>McDermott, C. I.</creatorcontrib><creatorcontrib>Couples, G. D.</creatorcontrib><creatorcontrib>Edlmann, K.</creatorcontrib><creatorcontrib>Lightbody, A.</creatorcontrib><creatorcontrib>Cartwright‐Taylor, A.</creatorcontrib><creatorcontrib>Kendrick, J. E.</creatorcontrib><creatorcontrib>Brondolo, F.</creatorcontrib><creatorcontrib>Fazio, M.</creatorcontrib><creatorcontrib>Sauter, M.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Experimental Investigation of Hydraulic Fracturing and Stress Sensitivity of Fracture Permeability Under Changing Polyaxial Stress Conditions</title><title>Journal of geophysical research. Solid earth</title><addtitle>J GEOPHYS RES-SOL EA</addtitle><description>Understanding and predicting fracture propagation and subsequent fluid flow characteristics is critical to geoenergy technologies that engineer and/or utilize favorable geological conditions to store or extract fluids from the subsurface. Fracture permeability decreases nonlinearly with increasing normal stress, but the relationship between shear displacement and fracture permeability is less well understood. We utilize the new Geo‐Reservoir Experimental Analogue Technology (GREAT cell), which can apply polyaxial stress states and realistic reservoir temperatures and pressures to cylindrical samples and has the unique capability to alter both the magnitude and orientation of the radial stress field by increments of 11.25° during an experiment. We load synthetic analogue materials and real rock samples to stress conditions representative of 500–1,000 m depth, investigate the hydraulic stimulation process, and then conduct flow experiments while changing the fluid pressure and the orientation of the intermediate and minimum principal stresses. High‐resolution circumferential strain measurements combined with fluid pressure data indicate fracture propagation can be both stable (no fluid pressure drop) and unstable (fluid pressure drop). The induced fractures exhibit both opening and shear displacements during their creation and/or during fluid flow with changing radial stress states. Flow tests during radial stress field rotation reveal that fracture normal effective stress has first‐order control on fracture permeability but increasing fracture offset can lead to elevated permeabilities at maximum shear stress. The results have implications for our conceptual understanding of fracture propagation as well as fluid flow and deformation around fractures.
Key Points
Hydraulic stimulation, monitored with fiber optic strain sensors, shows both stable and unstable fracture propagation
Controlled polyaxial stress with rotatable radial stresses are used to interrogate normal and shear stress controls on fracture fluid flow
Fracture normal effective stress exerts first‐order control on fracture permeability but increasing offset can lead to elevated permeability</description><subject>Crack propagation</subject><subject>Deformation</subject><subject>Effective stress</subject><subject>Flow characteristics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid pressure</subject><subject>Fluids</subject><subject>fracture fluid flow</subject><subject>Fracture mechanics</subject><subject>Fracture permeability</subject><subject>Geochemistry & Geophysics</subject><subject>Geophysics</subject><subject>GEOSCIENCES</subject><subject>Hydraulic fracturing</subject><subject>hydraulic stimulation</subject><subject>Mechanical stimuli</subject><subject>Orientation</subject><subject>Permeability</subject><subject>Physical Sciences</subject><subject>polyaxial stress</subject><subject>Pressure</subject><subject>Pressure data</subject><subject>Pressure drop</subject><subject>Propagation</subject><subject>Reservoir temperatures</subject><subject>Reservoirs</subject><subject>Science & Technology</subject><subject>Sediment samples</subject><subject>Shear stress</subject><subject>Stress distribution</subject><subject>Stress propagation</subject><subject>triaxial stress</subject><subject>true‐triaxial stress</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkctu3SAQhq2qlRql2fUBULtsT8vN2F42Vq6KlCiXNcIwnBA5cAo4jR-i71zccxR1FZUFjOD7Z4b5q-ojwd8Ipt13iik-Pywb5vxNtUeJ6FYdq8Xbl5iw99VBSg-4rLZcEb5X_T563kB0j-CzGtGZf4KU3VplFzwKFp3OJqppdBodR6XzFJ1fI-UNuskRUkI34JPL7snlecF3EKAriI-gBjcuD3feQET9vfLrRX4Vxlk9u1Jul6QP3rilYvpQvbNqTHCwO_eru-Oj2_50dXF5ctb_uFipGvNmRQYLpMMM40FxIZhpTIu1EY3ixhI86IELawhrcVeDEJwbTrjt2qG21mKh2X71aZs3lN_KpF0Gfa-D96CzJI1o65YW6PMW2sTwcypzkQ9hir70JSlvGKGU06ZQX7eUjiGlCFZuyjhVnCXBcjFG_mtMwdst_guGYEtl8BpeJMUYgVnpWJSIst7lv070YfK5SL_8v7TQbEe7EeZXm5LnJ9eHNa9Fw_4AcPqxXQ</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Fraser‐Harris, A. P.</creator><creator>McDermott, C. I.</creator><creator>Couples, G. D.</creator><creator>Edlmann, K.</creator><creator>Lightbody, A.</creator><creator>Cartwright‐Taylor, A.</creator><creator>Kendrick, J. E.</creator><creator>Brondolo, F.</creator><creator>Fazio, M.</creator><creator>Sauter, M.</creator><general>Amer Geophysical Union</general><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6039-6973</orcidid><orcidid>https://orcid.org/0000-0001-5106-3587</orcidid><orcidid>https://orcid.org/0000-0001-6158-5063</orcidid><orcidid>https://orcid.org/0000-0001-7805-4576</orcidid><orcidid>https://orcid.org/0000-0002-8917-8117</orcidid><orcidid>https://orcid.org/0000-0001-5787-2502</orcidid><orcidid>https://orcid.org/0000-0002-7837-0859</orcidid><orcidid>https://orcid.org/0000-0001-8379-6291</orcidid><orcidid>https://orcid.org/0000000157872502</orcidid><orcidid>https://orcid.org/0000000161585063</orcidid><orcidid>https://orcid.org/0000000289178117</orcidid><orcidid>https://orcid.org/0000000160396973</orcidid><orcidid>https://orcid.org/0000000178054576</orcidid><orcidid>https://orcid.org/0000000278370859</orcidid><orcidid>https://orcid.org/0000000151063587</orcidid><orcidid>https://orcid.org/0000000183796291</orcidid></search><sort><creationdate>202012</creationdate><title>Experimental Investigation of Hydraulic Fracturing and Stress Sensitivity of Fracture Permeability Under Changing Polyaxial Stress Conditions</title><author>Fraser‐Harris, A. P. ; McDermott, C. I. ; Couples, G. D. ; Edlmann, K. ; Lightbody, A. ; Cartwright‐Taylor, A. ; Kendrick, J. E. ; Brondolo, F. ; Fazio, M. ; Sauter, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5047-1bfe190300ba4663d7d80cd67a4df10bcb46fd138095e6644d414f98b5fff06c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Crack propagation</topic><topic>Deformation</topic><topic>Effective stress</topic><topic>Flow characteristics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid pressure</topic><topic>Fluids</topic><topic>fracture fluid flow</topic><topic>Fracture mechanics</topic><topic>Fracture permeability</topic><topic>Geochemistry & Geophysics</topic><topic>Geophysics</topic><topic>GEOSCIENCES</topic><topic>Hydraulic fracturing</topic><topic>hydraulic stimulation</topic><topic>Mechanical stimuli</topic><topic>Orientation</topic><topic>Permeability</topic><topic>Physical Sciences</topic><topic>polyaxial stress</topic><topic>Pressure</topic><topic>Pressure data</topic><topic>Pressure drop</topic><topic>Propagation</topic><topic>Reservoir temperatures</topic><topic>Reservoirs</topic><topic>Science & Technology</topic><topic>Sediment samples</topic><topic>Shear stress</topic><topic>Stress distribution</topic><topic>Stress propagation</topic><topic>triaxial stress</topic><topic>true‐triaxial stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fraser‐Harris, A. P.</creatorcontrib><creatorcontrib>McDermott, C. I.</creatorcontrib><creatorcontrib>Couples, G. D.</creatorcontrib><creatorcontrib>Edlmann, K.</creatorcontrib><creatorcontrib>Lightbody, A.</creatorcontrib><creatorcontrib>Cartwright‐Taylor, A.</creatorcontrib><creatorcontrib>Kendrick, J. E.</creatorcontrib><creatorcontrib>Brondolo, F.</creatorcontrib><creatorcontrib>Fazio, M.</creatorcontrib><creatorcontrib>Sauter, M.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fraser‐Harris, A. P.</au><au>McDermott, C. I.</au><au>Couples, G. D.</au><au>Edlmann, K.</au><au>Lightbody, A.</au><au>Cartwright‐Taylor, A.</au><au>Kendrick, J. E.</au><au>Brondolo, F.</au><au>Fazio, M.</au><au>Sauter, M.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Investigation of Hydraulic Fracturing and Stress Sensitivity of Fracture Permeability Under Changing Polyaxial Stress Conditions</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><stitle>J GEOPHYS RES-SOL EA</stitle><date>2020-12</date><risdate>2020</risdate><volume>125</volume><issue>12</issue><epage>n/a</epage><artnum>2020</artnum><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Understanding and predicting fracture propagation and subsequent fluid flow characteristics is critical to geoenergy technologies that engineer and/or utilize favorable geological conditions to store or extract fluids from the subsurface. Fracture permeability decreases nonlinearly with increasing normal stress, but the relationship between shear displacement and fracture permeability is less well understood. We utilize the new Geo‐Reservoir Experimental Analogue Technology (GREAT cell), which can apply polyaxial stress states and realistic reservoir temperatures and pressures to cylindrical samples and has the unique capability to alter both the magnitude and orientation of the radial stress field by increments of 11.25° during an experiment. We load synthetic analogue materials and real rock samples to stress conditions representative of 500–1,000 m depth, investigate the hydraulic stimulation process, and then conduct flow experiments while changing the fluid pressure and the orientation of the intermediate and minimum principal stresses. High‐resolution circumferential strain measurements combined with fluid pressure data indicate fracture propagation can be both stable (no fluid pressure drop) and unstable (fluid pressure drop). The induced fractures exhibit both opening and shear displacements during their creation and/or during fluid flow with changing radial stress states. Flow tests during radial stress field rotation reveal that fracture normal effective stress has first‐order control on fracture permeability but increasing fracture offset can lead to elevated permeabilities at maximum shear stress. The results have implications for our conceptual understanding of fracture propagation as well as fluid flow and deformation around fractures.
Key Points
Hydraulic stimulation, monitored with fiber optic strain sensors, shows both stable and unstable fracture propagation
Controlled polyaxial stress with rotatable radial stresses are used to interrogate normal and shear stress controls on fracture fluid flow
Fracture normal effective stress exerts first‐order control on fracture permeability but increasing offset can lead to elevated permeability</abstract><cop>WASHINGTON</cop><pub>Amer Geophysical Union</pub><doi>10.1029/2020JB020044</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-6039-6973</orcidid><orcidid>https://orcid.org/0000-0001-5106-3587</orcidid><orcidid>https://orcid.org/0000-0001-6158-5063</orcidid><orcidid>https://orcid.org/0000-0001-7805-4576</orcidid><orcidid>https://orcid.org/0000-0002-8917-8117</orcidid><orcidid>https://orcid.org/0000-0001-5787-2502</orcidid><orcidid>https://orcid.org/0000-0002-7837-0859</orcidid><orcidid>https://orcid.org/0000-0001-8379-6291</orcidid><orcidid>https://orcid.org/0000000157872502</orcidid><orcidid>https://orcid.org/0000000161585063</orcidid><orcidid>https://orcid.org/0000000289178117</orcidid><orcidid>https://orcid.org/0000000160396973</orcidid><orcidid>https://orcid.org/0000000178054576</orcidid><orcidid>https://orcid.org/0000000278370859</orcidid><orcidid>https://orcid.org/0000000151063587</orcidid><orcidid>https://orcid.org/0000000183796291</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2020-12, Vol.125 (12), p.n/a, Article 2020 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_proquest_journals_2473122427 |
source | Wiley Online Library - AutoHoldings Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection) |
subjects | Crack propagation Deformation Effective stress Flow characteristics Fluid dynamics Fluid flow Fluid pressure Fluids fracture fluid flow Fracture mechanics Fracture permeability Geochemistry & Geophysics Geophysics GEOSCIENCES Hydraulic fracturing hydraulic stimulation Mechanical stimuli Orientation Permeability Physical Sciences polyaxial stress Pressure Pressure data Pressure drop Propagation Reservoir temperatures Reservoirs Science & Technology Sediment samples Shear stress Stress distribution Stress propagation triaxial stress true‐triaxial stress |
title | Experimental Investigation of Hydraulic Fracturing and Stress Sensitivity of Fracture Permeability Under Changing Polyaxial Stress Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Investigation%20of%20Hydraulic%20Fracturing%20and%20Stress%20Sensitivity%20of%20Fracture%20Permeability%20Under%20Changing%20Polyaxial%20Stress%20Conditions&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Fraser%E2%80%90Harris,%20A.%20P.&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-12&rft.volume=125&rft.issue=12&rft.epage=n/a&rft.artnum=2020&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2020JB020044&rft_dat=%3Cproquest_osti_%3E2473122427%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473122427&rft_id=info:pmid/&rfr_iscdi=true |