Lunar Tide Effects on Ionospheric Solar Eclipse Signatures: The August 21, 2017 Event as an Example

The ionospheric total electron content (TEC) derived from dense ground‐based Global Navigation Satellite System receivers over the continental United States and those from global ionosphere maps are utilized to find the ionosphere response to the August 21, 2017 total solar eclipse. Maximum obscurat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2020-12, Vol.125 (12), p.n/a
Hauptverfasser: Liu, Jann‐Yenq, Wu, Tsung‐Yu, Sun, Yang‐Yi, Pedatella, Nicholas M., Lin, Chi‐Yen, Chang, Loren C., Chiu, Yi‐Chung, Lin, Chien‐Hung, Chen, Chia‐Hung, Chang, Fu‐Yuan, Lee, I‐Te, Chao, Chi‐Kuang, Krankowski, Andrzej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Journal of geophysical research. Space physics
container_volume 125
creator Liu, Jann‐Yenq
Wu, Tsung‐Yu
Sun, Yang‐Yi
Pedatella, Nicholas M.
Lin, Chi‐Yen
Chang, Loren C.
Chiu, Yi‐Chung
Lin, Chien‐Hung
Chen, Chia‐Hung
Chang, Fu‐Yuan
Lee, I‐Te
Chao, Chi‐Kuang
Krankowski, Andrzej
description The ionospheric total electron content (TEC) derived from dense ground‐based Global Navigation Satellite System receivers over the continental United States and those from global ionosphere maps are utilized to find the ionosphere response to the August 21, 2017 total solar eclipse. Maximum obscurations and their associated TEC major depressions appear simultaneously at midlatitudes, while major depressions elongate toward the magnetic equator with some delays in the equatorial ionization anomaly (EIA) region. The former is due to the photochemical loss process, while the latter is caused by the plasma transport of E×B drifts and lunar gravitation forces. TECs of predawn reductions, morning enhancements, afternoon reductions, and nighttime enhancements reveal that the semidiurnal lunar tide are essential. Since a solar eclipse always occurs on a new moon day, the lunar tide results in the early EIA appearance and major depressions being underestimated/diminished before and overestimated/enhanced after about 14:00 local time. Plain Language Summary Observations during an eclipse offer a special opportunity for studying the Earth's ionospheric response to changes in solar ionizing radiation. Although ionospheric solar eclipse signatures in many events have been studied, we report the lunar tide effect on the signatures for the first time. A total solar eclipse swept across the continental United States (CONUS) from the west to east coast on August 21, 2017. The total electron content (TEC) along seven longitudes of the US continent derived from more than 2,200 ground‐based Global Navigation Satellite System receivers in the CONUS and extracted from global ionosphere maps (GIMs) is employed to study ionospheric solar eclipse signatures. The most prominent solar eclipse signature is major depressions (MDs) in both the CONUS and GIM TECs, when the maximum obscuration occurs. TEC extrema of predawn reductions, morning enhancements, afternoon reductions, and nighttime enhancements reveal that the semidiurnal lunar tide of about 12.42‐h period is prominent. The lunar tide causes the early appearance of equatorial ionization anomalies, which further results in the MDs being weakened in the morning and enhanced in the afternoon on the solar eclipse day. The lunar tide has to be taken into consideration for studying ionospheric solar eclipse effects. Key Points The lunar tide results in the early appearance of the equatorial ionization anomaly on solar eclipse days T
doi_str_mv 10.1029/2020JA028472
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2472859364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2472859364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3071-192bfbcb5367631a0b3926e7e8eca7e701ec2703c9d31ccfb9533c8b6f9352563</originalsourceid><addsrcrecordid>eNp90FFLwzAQB_AgCo65Nz9AwNdVc8maNL6VUefGQHDzuaTZdevo2pq0zn17K1PwyXu54_hxB39CboHdA-P6gTPOFjHj0UTxCzLgIHWgJ4xf_s4iYtdk5P2e9RX1KwgHxC67yji6LjZIkzxH23paV3ReV7VvdugKS1d12YvElkXjka6KbWXazqF_pOsd0rjbdr6lHMaUM1A0-cCqpcZTU9Hk0xyaEm_IVW5Kj6OfPiRvT8l6-hwsX2bzabwMrGAKAtA8yzObhUIqKcCwTGguUWGE1ihUDNByxYTVGwHW5pkOhbBRJnMtQh5KMSR357uNq9879G26rztX9S9T3ocShVrISa_GZ2Vd7b3DPG1ccTDulAJLv5NM_ybZc3Hmx6LE0782Xcxe41ACgPgCFf9xZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472859364</pqid></control><display><type>article</type><title>Lunar Tide Effects on Ionospheric Solar Eclipse Signatures: The August 21, 2017 Event as an Example</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Liu, Jann‐Yenq ; Wu, Tsung‐Yu ; Sun, Yang‐Yi ; Pedatella, Nicholas M. ; Lin, Chi‐Yen ; Chang, Loren C. ; Chiu, Yi‐Chung ; Lin, Chien‐Hung ; Chen, Chia‐Hung ; Chang, Fu‐Yuan ; Lee, I‐Te ; Chao, Chi‐Kuang ; Krankowski, Andrzej</creator><creatorcontrib>Liu, Jann‐Yenq ; Wu, Tsung‐Yu ; Sun, Yang‐Yi ; Pedatella, Nicholas M. ; Lin, Chi‐Yen ; Chang, Loren C. ; Chiu, Yi‐Chung ; Lin, Chien‐Hung ; Chen, Chia‐Hung ; Chang, Fu‐Yuan ; Lee, I‐Te ; Chao, Chi‐Kuang ; Krankowski, Andrzej</creatorcontrib><description>The ionospheric total electron content (TEC) derived from dense ground‐based Global Navigation Satellite System receivers over the continental United States and those from global ionosphere maps are utilized to find the ionosphere response to the August 21, 2017 total solar eclipse. Maximum obscurations and their associated TEC major depressions appear simultaneously at midlatitudes, while major depressions elongate toward the magnetic equator with some delays in the equatorial ionization anomaly (EIA) region. The former is due to the photochemical loss process, while the latter is caused by the plasma transport of E×B drifts and lunar gravitation forces. TECs of predawn reductions, morning enhancements, afternoon reductions, and nighttime enhancements reveal that the semidiurnal lunar tide are essential. Since a solar eclipse always occurs on a new moon day, the lunar tide results in the early EIA appearance and major depressions being underestimated/diminished before and overestimated/enhanced after about 14:00 local time. Plain Language Summary Observations during an eclipse offer a special opportunity for studying the Earth's ionospheric response to changes in solar ionizing radiation. Although ionospheric solar eclipse signatures in many events have been studied, we report the lunar tide effect on the signatures for the first time. A total solar eclipse swept across the continental United States (CONUS) from the west to east coast on August 21, 2017. The total electron content (TEC) along seven longitudes of the US continent derived from more than 2,200 ground‐based Global Navigation Satellite System receivers in the CONUS and extracted from global ionosphere maps (GIMs) is employed to study ionospheric solar eclipse signatures. The most prominent solar eclipse signature is major depressions (MDs) in both the CONUS and GIM TECs, when the maximum obscuration occurs. TEC extrema of predawn reductions, morning enhancements, afternoon reductions, and nighttime enhancements reveal that the semidiurnal lunar tide of about 12.42‐h period is prominent. The lunar tide causes the early appearance of equatorial ionization anomalies, which further results in the MDs being weakened in the morning and enhanced in the afternoon on the solar eclipse day. The lunar tide has to be taken into consideration for studying ionospheric solar eclipse effects. Key Points The lunar tide results in the early appearance of the equatorial ionization anomaly on solar eclipse days Total electron contents tend to enhance before and decrease after 14:00 local time (LT) on a solar eclipse day The lunar tide causes major depressions being weakened before and enhanced after 14:00 LT</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2020JA028472</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anomalies ; Diurnal variations ; Eclipse effects ; Equator ; Equatorial ionization anomaly ; Equatorial regions ; Global navigation satellite system ; Ionization ; Ionizing radiation ; Ionosphere ; Ionospheric electron content ; Lunar eclipses ; Lunar gravitation ; lunar tide ; Lunar tides ; Magnetic equator ; Moon ; Navigation satellites ; Navigation systems ; Night ; Occultation ; Photochemicals ; Radiation ; Receivers ; Signatures ; solar eclipse ; Solar eclipse effects ; Solar eclipses ; Total Electron Content</subject><ispartof>Journal of geophysical research. Space physics, 2020-12, Vol.125 (12), p.n/a</ispartof><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3071-192bfbcb5367631a0b3926e7e8eca7e701ec2703c9d31ccfb9533c8b6f9352563</citedby><cites>FETCH-LOGICAL-c3071-192bfbcb5367631a0b3926e7e8eca7e701ec2703c9d31ccfb9533c8b6f9352563</cites><orcidid>0000-0002-7926-9605 ; 0000-0001-7061-2182 ; 0000-0001-7069-2434 ; 0000-0003-2812-6222 ; 0000-0003-4228-0672 ; 0000-0003-2993-6825 ; 0000-0002-1468-8358 ; 0000-0002-0058-6430 ; 0000-0002-6495-1185 ; 0000-0001-8255-8187 ; 0000-0001-8955-8753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020JA028472$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020JA028472$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids></links><search><creatorcontrib>Liu, Jann‐Yenq</creatorcontrib><creatorcontrib>Wu, Tsung‐Yu</creatorcontrib><creatorcontrib>Sun, Yang‐Yi</creatorcontrib><creatorcontrib>Pedatella, Nicholas M.</creatorcontrib><creatorcontrib>Lin, Chi‐Yen</creatorcontrib><creatorcontrib>Chang, Loren C.</creatorcontrib><creatorcontrib>Chiu, Yi‐Chung</creatorcontrib><creatorcontrib>Lin, Chien‐Hung</creatorcontrib><creatorcontrib>Chen, Chia‐Hung</creatorcontrib><creatorcontrib>Chang, Fu‐Yuan</creatorcontrib><creatorcontrib>Lee, I‐Te</creatorcontrib><creatorcontrib>Chao, Chi‐Kuang</creatorcontrib><creatorcontrib>Krankowski, Andrzej</creatorcontrib><title>Lunar Tide Effects on Ionospheric Solar Eclipse Signatures: The August 21, 2017 Event as an Example</title><title>Journal of geophysical research. Space physics</title><description>The ionospheric total electron content (TEC) derived from dense ground‐based Global Navigation Satellite System receivers over the continental United States and those from global ionosphere maps are utilized to find the ionosphere response to the August 21, 2017 total solar eclipse. Maximum obscurations and their associated TEC major depressions appear simultaneously at midlatitudes, while major depressions elongate toward the magnetic equator with some delays in the equatorial ionization anomaly (EIA) region. The former is due to the photochemical loss process, while the latter is caused by the plasma transport of E×B drifts and lunar gravitation forces. TECs of predawn reductions, morning enhancements, afternoon reductions, and nighttime enhancements reveal that the semidiurnal lunar tide are essential. Since a solar eclipse always occurs on a new moon day, the lunar tide results in the early EIA appearance and major depressions being underestimated/diminished before and overestimated/enhanced after about 14:00 local time. Plain Language Summary Observations during an eclipse offer a special opportunity for studying the Earth's ionospheric response to changes in solar ionizing radiation. Although ionospheric solar eclipse signatures in many events have been studied, we report the lunar tide effect on the signatures for the first time. A total solar eclipse swept across the continental United States (CONUS) from the west to east coast on August 21, 2017. The total electron content (TEC) along seven longitudes of the US continent derived from more than 2,200 ground‐based Global Navigation Satellite System receivers in the CONUS and extracted from global ionosphere maps (GIMs) is employed to study ionospheric solar eclipse signatures. The most prominent solar eclipse signature is major depressions (MDs) in both the CONUS and GIM TECs, when the maximum obscuration occurs. TEC extrema of predawn reductions, morning enhancements, afternoon reductions, and nighttime enhancements reveal that the semidiurnal lunar tide of about 12.42‐h period is prominent. The lunar tide causes the early appearance of equatorial ionization anomalies, which further results in the MDs being weakened in the morning and enhanced in the afternoon on the solar eclipse day. The lunar tide has to be taken into consideration for studying ionospheric solar eclipse effects. Key Points The lunar tide results in the early appearance of the equatorial ionization anomaly on solar eclipse days Total electron contents tend to enhance before and decrease after 14:00 local time (LT) on a solar eclipse day The lunar tide causes major depressions being weakened before and enhanced after 14:00 LT</description><subject>Anomalies</subject><subject>Diurnal variations</subject><subject>Eclipse effects</subject><subject>Equator</subject><subject>Equatorial ionization anomaly</subject><subject>Equatorial regions</subject><subject>Global navigation satellite system</subject><subject>Ionization</subject><subject>Ionizing radiation</subject><subject>Ionosphere</subject><subject>Ionospheric electron content</subject><subject>Lunar eclipses</subject><subject>Lunar gravitation</subject><subject>lunar tide</subject><subject>Lunar tides</subject><subject>Magnetic equator</subject><subject>Moon</subject><subject>Navigation satellites</subject><subject>Navigation systems</subject><subject>Night</subject><subject>Occultation</subject><subject>Photochemicals</subject><subject>Radiation</subject><subject>Receivers</subject><subject>Signatures</subject><subject>solar eclipse</subject><subject>Solar eclipse effects</subject><subject>Solar eclipses</subject><subject>Total Electron Content</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90FFLwzAQB_AgCo65Nz9AwNdVc8maNL6VUefGQHDzuaTZdevo2pq0zn17K1PwyXu54_hxB39CboHdA-P6gTPOFjHj0UTxCzLgIHWgJ4xf_s4iYtdk5P2e9RX1KwgHxC67yji6LjZIkzxH23paV3ReV7VvdugKS1d12YvElkXjka6KbWXazqF_pOsd0rjbdr6lHMaUM1A0-cCqpcZTU9Hk0xyaEm_IVW5Kj6OfPiRvT8l6-hwsX2bzabwMrGAKAtA8yzObhUIqKcCwTGguUWGE1ihUDNByxYTVGwHW5pkOhbBRJnMtQh5KMSR357uNq9879G26rztX9S9T3ocShVrISa_GZ2Vd7b3DPG1ccTDulAJLv5NM_ybZc3Hmx6LE0782Xcxe41ACgPgCFf9xZg</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Liu, Jann‐Yenq</creator><creator>Wu, Tsung‐Yu</creator><creator>Sun, Yang‐Yi</creator><creator>Pedatella, Nicholas M.</creator><creator>Lin, Chi‐Yen</creator><creator>Chang, Loren C.</creator><creator>Chiu, Yi‐Chung</creator><creator>Lin, Chien‐Hung</creator><creator>Chen, Chia‐Hung</creator><creator>Chang, Fu‐Yuan</creator><creator>Lee, I‐Te</creator><creator>Chao, Chi‐Kuang</creator><creator>Krankowski, Andrzej</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7926-9605</orcidid><orcidid>https://orcid.org/0000-0001-7061-2182</orcidid><orcidid>https://orcid.org/0000-0001-7069-2434</orcidid><orcidid>https://orcid.org/0000-0003-2812-6222</orcidid><orcidid>https://orcid.org/0000-0003-4228-0672</orcidid><orcidid>https://orcid.org/0000-0003-2993-6825</orcidid><orcidid>https://orcid.org/0000-0002-1468-8358</orcidid><orcidid>https://orcid.org/0000-0002-0058-6430</orcidid><orcidid>https://orcid.org/0000-0002-6495-1185</orcidid><orcidid>https://orcid.org/0000-0001-8255-8187</orcidid><orcidid>https://orcid.org/0000-0001-8955-8753</orcidid></search><sort><creationdate>202012</creationdate><title>Lunar Tide Effects on Ionospheric Solar Eclipse Signatures: The August 21, 2017 Event as an Example</title><author>Liu, Jann‐Yenq ; Wu, Tsung‐Yu ; Sun, Yang‐Yi ; Pedatella, Nicholas M. ; Lin, Chi‐Yen ; Chang, Loren C. ; Chiu, Yi‐Chung ; Lin, Chien‐Hung ; Chen, Chia‐Hung ; Chang, Fu‐Yuan ; Lee, I‐Te ; Chao, Chi‐Kuang ; Krankowski, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3071-192bfbcb5367631a0b3926e7e8eca7e701ec2703c9d31ccfb9533c8b6f9352563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomalies</topic><topic>Diurnal variations</topic><topic>Eclipse effects</topic><topic>Equator</topic><topic>Equatorial ionization anomaly</topic><topic>Equatorial regions</topic><topic>Global navigation satellite system</topic><topic>Ionization</topic><topic>Ionizing radiation</topic><topic>Ionosphere</topic><topic>Ionospheric electron content</topic><topic>Lunar eclipses</topic><topic>Lunar gravitation</topic><topic>lunar tide</topic><topic>Lunar tides</topic><topic>Magnetic equator</topic><topic>Moon</topic><topic>Navigation satellites</topic><topic>Navigation systems</topic><topic>Night</topic><topic>Occultation</topic><topic>Photochemicals</topic><topic>Radiation</topic><topic>Receivers</topic><topic>Signatures</topic><topic>solar eclipse</topic><topic>Solar eclipse effects</topic><topic>Solar eclipses</topic><topic>Total Electron Content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jann‐Yenq</creatorcontrib><creatorcontrib>Wu, Tsung‐Yu</creatorcontrib><creatorcontrib>Sun, Yang‐Yi</creatorcontrib><creatorcontrib>Pedatella, Nicholas M.</creatorcontrib><creatorcontrib>Lin, Chi‐Yen</creatorcontrib><creatorcontrib>Chang, Loren C.</creatorcontrib><creatorcontrib>Chiu, Yi‐Chung</creatorcontrib><creatorcontrib>Lin, Chien‐Hung</creatorcontrib><creatorcontrib>Chen, Chia‐Hung</creatorcontrib><creatorcontrib>Chang, Fu‐Yuan</creatorcontrib><creatorcontrib>Lee, I‐Te</creatorcontrib><creatorcontrib>Chao, Chi‐Kuang</creatorcontrib><creatorcontrib>Krankowski, Andrzej</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jann‐Yenq</au><au>Wu, Tsung‐Yu</au><au>Sun, Yang‐Yi</au><au>Pedatella, Nicholas M.</au><au>Lin, Chi‐Yen</au><au>Chang, Loren C.</au><au>Chiu, Yi‐Chung</au><au>Lin, Chien‐Hung</au><au>Chen, Chia‐Hung</au><au>Chang, Fu‐Yuan</au><au>Lee, I‐Te</au><au>Chao, Chi‐Kuang</au><au>Krankowski, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lunar Tide Effects on Ionospheric Solar Eclipse Signatures: The August 21, 2017 Event as an Example</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2020-12</date><risdate>2020</risdate><volume>125</volume><issue>12</issue><epage>n/a</epage><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>The ionospheric total electron content (TEC) derived from dense ground‐based Global Navigation Satellite System receivers over the continental United States and those from global ionosphere maps are utilized to find the ionosphere response to the August 21, 2017 total solar eclipse. Maximum obscurations and their associated TEC major depressions appear simultaneously at midlatitudes, while major depressions elongate toward the magnetic equator with some delays in the equatorial ionization anomaly (EIA) region. The former is due to the photochemical loss process, while the latter is caused by the plasma transport of E×B drifts and lunar gravitation forces. TECs of predawn reductions, morning enhancements, afternoon reductions, and nighttime enhancements reveal that the semidiurnal lunar tide are essential. Since a solar eclipse always occurs on a new moon day, the lunar tide results in the early EIA appearance and major depressions being underestimated/diminished before and overestimated/enhanced after about 14:00 local time. Plain Language Summary Observations during an eclipse offer a special opportunity for studying the Earth's ionospheric response to changes in solar ionizing radiation. Although ionospheric solar eclipse signatures in many events have been studied, we report the lunar tide effect on the signatures for the first time. A total solar eclipse swept across the continental United States (CONUS) from the west to east coast on August 21, 2017. The total electron content (TEC) along seven longitudes of the US continent derived from more than 2,200 ground‐based Global Navigation Satellite System receivers in the CONUS and extracted from global ionosphere maps (GIMs) is employed to study ionospheric solar eclipse signatures. The most prominent solar eclipse signature is major depressions (MDs) in both the CONUS and GIM TECs, when the maximum obscuration occurs. TEC extrema of predawn reductions, morning enhancements, afternoon reductions, and nighttime enhancements reveal that the semidiurnal lunar tide of about 12.42‐h period is prominent. The lunar tide causes the early appearance of equatorial ionization anomalies, which further results in the MDs being weakened in the morning and enhanced in the afternoon on the solar eclipse day. The lunar tide has to be taken into consideration for studying ionospheric solar eclipse effects. Key Points The lunar tide results in the early appearance of the equatorial ionization anomaly on solar eclipse days Total electron contents tend to enhance before and decrease after 14:00 local time (LT) on a solar eclipse day The lunar tide causes major depressions being weakened before and enhanced after 14:00 LT</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2020JA028472</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7926-9605</orcidid><orcidid>https://orcid.org/0000-0001-7061-2182</orcidid><orcidid>https://orcid.org/0000-0001-7069-2434</orcidid><orcidid>https://orcid.org/0000-0003-2812-6222</orcidid><orcidid>https://orcid.org/0000-0003-4228-0672</orcidid><orcidid>https://orcid.org/0000-0003-2993-6825</orcidid><orcidid>https://orcid.org/0000-0002-1468-8358</orcidid><orcidid>https://orcid.org/0000-0002-0058-6430</orcidid><orcidid>https://orcid.org/0000-0002-6495-1185</orcidid><orcidid>https://orcid.org/0000-0001-8255-8187</orcidid><orcidid>https://orcid.org/0000-0001-8955-8753</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2020-12, Vol.125 (12), p.n/a
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_2472859364
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects Anomalies
Diurnal variations
Eclipse effects
Equator
Equatorial ionization anomaly
Equatorial regions
Global navigation satellite system
Ionization
Ionizing radiation
Ionosphere
Ionospheric electron content
Lunar eclipses
Lunar gravitation
lunar tide
Lunar tides
Magnetic equator
Moon
Navigation satellites
Navigation systems
Night
Occultation
Photochemicals
Radiation
Receivers
Signatures
solar eclipse
Solar eclipse effects
Solar eclipses
Total Electron Content
title Lunar Tide Effects on Ionospheric Solar Eclipse Signatures: The August 21, 2017 Event as an Example
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lunar%20Tide%20Effects%20on%20Ionospheric%20Solar%20Eclipse%20Signatures:%20The%20August%2021,%202017%20Event%20as%20an%20Example&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Liu,%20Jann%E2%80%90Yenq&rft.date=2020-12&rft.volume=125&rft.issue=12&rft.epage=n/a&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2020JA028472&rft_dat=%3Cproquest_cross%3E2472859364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472859364&rft_id=info:pmid/&rfr_iscdi=true