Arbitrary-Oriented Object Detection in Remote Sensing Images Based on Polar Coordinates
Arbitrary-oriented object detection is an important task in the field of remote sensing object detection. Existing studies have shown that the polar coordinate system has obvious advantages in dealing with the problem of rotating object modeling, that is, using fewer parameters to achieve more accur...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.223373-223384 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 223384 |
---|---|
container_issue | |
container_start_page | 223373 |
container_title | IEEE access |
container_volume | 8 |
creator | Zhou, Lin Wei, Haoran Li, Hao Zhao, Wenzhe Zhang, Yi Zhang, Yue |
description | Arbitrary-oriented object detection is an important task in the field of remote sensing object detection. Existing studies have shown that the polar coordinate system has obvious advantages in dealing with the problem of rotating object modeling, that is, using fewer parameters to achieve more accurate rotating object detection. However, present state-of-the-art detectors based on deep learning are all modeled in Cartesian coordinates. In this article, we introduce the polar coordinate system to the deep learning detector for the first time, and propose an anchor free Polar Remote Sensing Object Detector (P-RSDet), which can achieve competitive detection accuracy via using simpler object representation model and less regression parameters. In P-RSDet method, arbitrary-oriented object detection can be achieved by predicting the center point and regressing one polar radius and two polar angles. Besides, in order to express the geometric constraint relationship between the polar radius and the polar angle, a Polar Ring Area Loss function is proposed to improve the prediction accuracy of the corner position. Experiments on DOTA, UCAS-AOD and NWPU VHR-10 datasets show that our P-RSDet achieves state-of-the-art performances with simpler model and less regression parameters. |
doi_str_mv | 10.1109/ACCESS.2020.3041025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2472322001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9272784</ieee_id><doaj_id>oai_doaj_org_article_0626c421e1e0442bb55b799d8056e9ce</doaj_id><sourcerecordid>2472322001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-63374db2f3d2287890aa7a8cb8ebf1b6c3973045d0a1cf639cf57f7193c314d13</originalsourceid><addsrcrecordid>eNpNUUtLxDAQDqKgrP4CLwXPXfNq0xzX-loQVlzFY0jS6ZKy22iSPfjvzVoR5zLD8D1m-BC6JHhOCJbXi7a9W6_nFFM8Z5gTTKsjdEZJLUtWsfr433yKLmIccK4mrypxht4XwbgUdPgqV8HBmKArVmYAm4pbSLk5PxZuLF5g5xMUaxijGzfFcqc3EIsbHTM-I579Voei9T50btQJ4jk66fU2wsVvn6G3-7vX9rF8Wj0s28VTaTluUlkzJnhnaM86ShvRSKy10I01DZiemNoyKfJPVYc1sX3NpO0r0QsimWWEd4TN0HLS7bwe1Edwu_yK8tqpn4UPG6VDcnYLCte0tpwSIIA5p8ZUlRFSdg2uapAWstbVpPUR_OceYlKD34cxn68oF5RRivHBkU0oG3yMAfo_V4LVIRA1BaIOgajfQDLrcmI5APhjSCqoaDj7Bn82hTg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472322001</pqid></control><display><type>article</type><title>Arbitrary-Oriented Object Detection in Remote Sensing Images Based on Polar Coordinates</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhou, Lin ; Wei, Haoran ; Li, Hao ; Zhao, Wenzhe ; Zhang, Yi ; Zhang, Yue</creator><creatorcontrib>Zhou, Lin ; Wei, Haoran ; Li, Hao ; Zhao, Wenzhe ; Zhang, Yi ; Zhang, Yue</creatorcontrib><description>Arbitrary-oriented object detection is an important task in the field of remote sensing object detection. Existing studies have shown that the polar coordinate system has obvious advantages in dealing with the problem of rotating object modeling, that is, using fewer parameters to achieve more accurate rotating object detection. However, present state-of-the-art detectors based on deep learning are all modeled in Cartesian coordinates. In this article, we introduce the polar coordinate system to the deep learning detector for the first time, and propose an anchor free Polar Remote Sensing Object Detector (P-RSDet), which can achieve competitive detection accuracy via using simpler object representation model and less regression parameters. In P-RSDet method, arbitrary-oriented object detection can be achieved by predicting the center point and regressing one polar radius and two polar angles. Besides, in order to express the geometric constraint relationship between the polar radius and the polar angle, a Polar Ring Area Loss function is proposed to improve the prediction accuracy of the corner position. Experiments on DOTA, UCAS-AOD and NWPU VHR-10 datasets show that our P-RSDet achieves state-of-the-art performances with simpler model and less regression parameters.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3041025</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>anchor free ; Angles (geometry) ; Cartesian coordinates ; Deep learning ; Detectors ; Feature extraction ; Geometric constraints ; Model accuracy ; Object detection ; Object recognition ; oriented detection ; Parameters ; Polar coordinates ; Proposals ; Regression models ; Remote sensing ; Remote sensing images ; Rotation</subject><ispartof>IEEE access, 2020, Vol.8, p.223373-223384</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-63374db2f3d2287890aa7a8cb8ebf1b6c3973045d0a1cf639cf57f7193c314d13</citedby><cites>FETCH-LOGICAL-c408t-63374db2f3d2287890aa7a8cb8ebf1b6c3973045d0a1cf639cf57f7193c314d13</cites><orcidid>0000-0002-5130-7219 ; 0000-0003-2283-1895 ; 0000-0002-6327-5023 ; 0000-0003-2898-5633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9272784$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Wei, Haoran</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Zhao, Wenzhe</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><title>Arbitrary-Oriented Object Detection in Remote Sensing Images Based on Polar Coordinates</title><title>IEEE access</title><addtitle>Access</addtitle><description>Arbitrary-oriented object detection is an important task in the field of remote sensing object detection. Existing studies have shown that the polar coordinate system has obvious advantages in dealing with the problem of rotating object modeling, that is, using fewer parameters to achieve more accurate rotating object detection. However, present state-of-the-art detectors based on deep learning are all modeled in Cartesian coordinates. In this article, we introduce the polar coordinate system to the deep learning detector for the first time, and propose an anchor free Polar Remote Sensing Object Detector (P-RSDet), which can achieve competitive detection accuracy via using simpler object representation model and less regression parameters. In P-RSDet method, arbitrary-oriented object detection can be achieved by predicting the center point and regressing one polar radius and two polar angles. Besides, in order to express the geometric constraint relationship between the polar radius and the polar angle, a Polar Ring Area Loss function is proposed to improve the prediction accuracy of the corner position. Experiments on DOTA, UCAS-AOD and NWPU VHR-10 datasets show that our P-RSDet achieves state-of-the-art performances with simpler model and less regression parameters.</description><subject>anchor free</subject><subject>Angles (geometry)</subject><subject>Cartesian coordinates</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Geometric constraints</subject><subject>Model accuracy</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>oriented detection</subject><subject>Parameters</subject><subject>Polar coordinates</subject><subject>Proposals</subject><subject>Regression models</subject><subject>Remote sensing</subject><subject>Remote sensing images</subject><subject>Rotation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLxDAQDqKgrP4CLwXPXfNq0xzX-loQVlzFY0jS6ZKy22iSPfjvzVoR5zLD8D1m-BC6JHhOCJbXi7a9W6_nFFM8Z5gTTKsjdEZJLUtWsfr433yKLmIccK4mrypxht4XwbgUdPgqV8HBmKArVmYAm4pbSLk5PxZuLF5g5xMUaxijGzfFcqc3EIsbHTM-I579Voei9T50btQJ4jk66fU2wsVvn6G3-7vX9rF8Wj0s28VTaTluUlkzJnhnaM86ShvRSKy10I01DZiemNoyKfJPVYc1sX3NpO0r0QsimWWEd4TN0HLS7bwe1Edwu_yK8tqpn4UPG6VDcnYLCte0tpwSIIA5p8ZUlRFSdg2uapAWstbVpPUR_OceYlKD34cxn68oF5RRivHBkU0oG3yMAfo_V4LVIRA1BaIOgajfQDLrcmI5APhjSCqoaDj7Bn82hTg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhou, Lin</creator><creator>Wei, Haoran</creator><creator>Li, Hao</creator><creator>Zhao, Wenzhe</creator><creator>Zhang, Yi</creator><creator>Zhang, Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5130-7219</orcidid><orcidid>https://orcid.org/0000-0003-2283-1895</orcidid><orcidid>https://orcid.org/0000-0002-6327-5023</orcidid><orcidid>https://orcid.org/0000-0003-2898-5633</orcidid></search><sort><creationdate>2020</creationdate><title>Arbitrary-Oriented Object Detection in Remote Sensing Images Based on Polar Coordinates</title><author>Zhou, Lin ; Wei, Haoran ; Li, Hao ; Zhao, Wenzhe ; Zhang, Yi ; Zhang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-63374db2f3d2287890aa7a8cb8ebf1b6c3973045d0a1cf639cf57f7193c314d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>anchor free</topic><topic>Angles (geometry)</topic><topic>Cartesian coordinates</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Geometric constraints</topic><topic>Model accuracy</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>oriented detection</topic><topic>Parameters</topic><topic>Polar coordinates</topic><topic>Proposals</topic><topic>Regression models</topic><topic>Remote sensing</topic><topic>Remote sensing images</topic><topic>Rotation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Wei, Haoran</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Zhao, Wenzhe</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Lin</au><au>Wei, Haoran</au><au>Li, Hao</au><au>Zhao, Wenzhe</au><au>Zhang, Yi</au><au>Zhang, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arbitrary-Oriented Object Detection in Remote Sensing Images Based on Polar Coordinates</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>223373</spage><epage>223384</epage><pages>223373-223384</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Arbitrary-oriented object detection is an important task in the field of remote sensing object detection. Existing studies have shown that the polar coordinate system has obvious advantages in dealing with the problem of rotating object modeling, that is, using fewer parameters to achieve more accurate rotating object detection. However, present state-of-the-art detectors based on deep learning are all modeled in Cartesian coordinates. In this article, we introduce the polar coordinate system to the deep learning detector for the first time, and propose an anchor free Polar Remote Sensing Object Detector (P-RSDet), which can achieve competitive detection accuracy via using simpler object representation model and less regression parameters. In P-RSDet method, arbitrary-oriented object detection can be achieved by predicting the center point and regressing one polar radius and two polar angles. Besides, in order to express the geometric constraint relationship between the polar radius and the polar angle, a Polar Ring Area Loss function is proposed to improve the prediction accuracy of the corner position. Experiments on DOTA, UCAS-AOD and NWPU VHR-10 datasets show that our P-RSDet achieves state-of-the-art performances with simpler model and less regression parameters.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3041025</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5130-7219</orcidid><orcidid>https://orcid.org/0000-0003-2283-1895</orcidid><orcidid>https://orcid.org/0000-0002-6327-5023</orcidid><orcidid>https://orcid.org/0000-0003-2898-5633</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.223373-223384 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2472322001 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | anchor free Angles (geometry) Cartesian coordinates Deep learning Detectors Feature extraction Geometric constraints Model accuracy Object detection Object recognition oriented detection Parameters Polar coordinates Proposals Regression models Remote sensing Remote sensing images Rotation |
title | Arbitrary-Oriented Object Detection in Remote Sensing Images Based on Polar Coordinates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arbitrary-Oriented%20Object%20Detection%20in%20Remote%20Sensing%20Images%20Based%20on%20Polar%20Coordinates&rft.jtitle=IEEE%20access&rft.au=Zhou,%20Lin&rft.date=2020&rft.volume=8&rft.spage=223373&rft.epage=223384&rft.pages=223373-223384&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3041025&rft_dat=%3Cproquest_ieee_%3E2472322001%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472322001&rft_id=info:pmid/&rft_ieee_id=9272784&rft_doaj_id=oai_doaj_org_article_0626c421e1e0442bb55b799d8056e9ce&rfr_iscdi=true |