Arbitrary-Oriented Object Detection in Remote Sensing Images Based on Polar Coordinates

Arbitrary-oriented object detection is an important task in the field of remote sensing object detection. Existing studies have shown that the polar coordinate system has obvious advantages in dealing with the problem of rotating object modeling, that is, using fewer parameters to achieve more accur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.223373-223384
Hauptverfasser: Zhou, Lin, Wei, Haoran, Li, Hao, Zhao, Wenzhe, Zhang, Yi, Zhang, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223384
container_issue
container_start_page 223373
container_title IEEE access
container_volume 8
creator Zhou, Lin
Wei, Haoran
Li, Hao
Zhao, Wenzhe
Zhang, Yi
Zhang, Yue
description Arbitrary-oriented object detection is an important task in the field of remote sensing object detection. Existing studies have shown that the polar coordinate system has obvious advantages in dealing with the problem of rotating object modeling, that is, using fewer parameters to achieve more accurate rotating object detection. However, present state-of-the-art detectors based on deep learning are all modeled in Cartesian coordinates. In this article, we introduce the polar coordinate system to the deep learning detector for the first time, and propose an anchor free Polar Remote Sensing Object Detector (P-RSDet), which can achieve competitive detection accuracy via using simpler object representation model and less regression parameters. In P-RSDet method, arbitrary-oriented object detection can be achieved by predicting the center point and regressing one polar radius and two polar angles. Besides, in order to express the geometric constraint relationship between the polar radius and the polar angle, a Polar Ring Area Loss function is proposed to improve the prediction accuracy of the corner position. Experiments on DOTA, UCAS-AOD and NWPU VHR-10 datasets show that our P-RSDet achieves state-of-the-art performances with simpler model and less regression parameters.
doi_str_mv 10.1109/ACCESS.2020.3041025
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2472322001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9272784</ieee_id><doaj_id>oai_doaj_org_article_0626c421e1e0442bb55b799d8056e9ce</doaj_id><sourcerecordid>2472322001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-63374db2f3d2287890aa7a8cb8ebf1b6c3973045d0a1cf639cf57f7193c314d13</originalsourceid><addsrcrecordid>eNpNUUtLxDAQDqKgrP4CLwXPXfNq0xzX-loQVlzFY0jS6ZKy22iSPfjvzVoR5zLD8D1m-BC6JHhOCJbXi7a9W6_nFFM8Z5gTTKsjdEZJLUtWsfr433yKLmIccK4mrypxht4XwbgUdPgqV8HBmKArVmYAm4pbSLk5PxZuLF5g5xMUaxijGzfFcqc3EIsbHTM-I579Voei9T50btQJ4jk66fU2wsVvn6G3-7vX9rF8Wj0s28VTaTluUlkzJnhnaM86ShvRSKy10I01DZiemNoyKfJPVYc1sX3NpO0r0QsimWWEd4TN0HLS7bwe1Edwu_yK8tqpn4UPG6VDcnYLCte0tpwSIIA5p8ZUlRFSdg2uapAWstbVpPUR_OceYlKD34cxn68oF5RRivHBkU0oG3yMAfo_V4LVIRA1BaIOgajfQDLrcmI5APhjSCqoaDj7Bn82hTg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472322001</pqid></control><display><type>article</type><title>Arbitrary-Oriented Object Detection in Remote Sensing Images Based on Polar Coordinates</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhou, Lin ; Wei, Haoran ; Li, Hao ; Zhao, Wenzhe ; Zhang, Yi ; Zhang, Yue</creator><creatorcontrib>Zhou, Lin ; Wei, Haoran ; Li, Hao ; Zhao, Wenzhe ; Zhang, Yi ; Zhang, Yue</creatorcontrib><description>Arbitrary-oriented object detection is an important task in the field of remote sensing object detection. Existing studies have shown that the polar coordinate system has obvious advantages in dealing with the problem of rotating object modeling, that is, using fewer parameters to achieve more accurate rotating object detection. However, present state-of-the-art detectors based on deep learning are all modeled in Cartesian coordinates. In this article, we introduce the polar coordinate system to the deep learning detector for the first time, and propose an anchor free Polar Remote Sensing Object Detector (P-RSDet), which can achieve competitive detection accuracy via using simpler object representation model and less regression parameters. In P-RSDet method, arbitrary-oriented object detection can be achieved by predicting the center point and regressing one polar radius and two polar angles. Besides, in order to express the geometric constraint relationship between the polar radius and the polar angle, a Polar Ring Area Loss function is proposed to improve the prediction accuracy of the corner position. Experiments on DOTA, UCAS-AOD and NWPU VHR-10 datasets show that our P-RSDet achieves state-of-the-art performances with simpler model and less regression parameters.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3041025</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>anchor free ; Angles (geometry) ; Cartesian coordinates ; Deep learning ; Detectors ; Feature extraction ; Geometric constraints ; Model accuracy ; Object detection ; Object recognition ; oriented detection ; Parameters ; Polar coordinates ; Proposals ; Regression models ; Remote sensing ; Remote sensing images ; Rotation</subject><ispartof>IEEE access, 2020, Vol.8, p.223373-223384</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-63374db2f3d2287890aa7a8cb8ebf1b6c3973045d0a1cf639cf57f7193c314d13</citedby><cites>FETCH-LOGICAL-c408t-63374db2f3d2287890aa7a8cb8ebf1b6c3973045d0a1cf639cf57f7193c314d13</cites><orcidid>0000-0002-5130-7219 ; 0000-0003-2283-1895 ; 0000-0002-6327-5023 ; 0000-0003-2898-5633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9272784$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Wei, Haoran</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Zhao, Wenzhe</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><title>Arbitrary-Oriented Object Detection in Remote Sensing Images Based on Polar Coordinates</title><title>IEEE access</title><addtitle>Access</addtitle><description>Arbitrary-oriented object detection is an important task in the field of remote sensing object detection. Existing studies have shown that the polar coordinate system has obvious advantages in dealing with the problem of rotating object modeling, that is, using fewer parameters to achieve more accurate rotating object detection. However, present state-of-the-art detectors based on deep learning are all modeled in Cartesian coordinates. In this article, we introduce the polar coordinate system to the deep learning detector for the first time, and propose an anchor free Polar Remote Sensing Object Detector (P-RSDet), which can achieve competitive detection accuracy via using simpler object representation model and less regression parameters. In P-RSDet method, arbitrary-oriented object detection can be achieved by predicting the center point and regressing one polar radius and two polar angles. Besides, in order to express the geometric constraint relationship between the polar radius and the polar angle, a Polar Ring Area Loss function is proposed to improve the prediction accuracy of the corner position. Experiments on DOTA, UCAS-AOD and NWPU VHR-10 datasets show that our P-RSDet achieves state-of-the-art performances with simpler model and less regression parameters.</description><subject>anchor free</subject><subject>Angles (geometry)</subject><subject>Cartesian coordinates</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Geometric constraints</subject><subject>Model accuracy</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>oriented detection</subject><subject>Parameters</subject><subject>Polar coordinates</subject><subject>Proposals</subject><subject>Regression models</subject><subject>Remote sensing</subject><subject>Remote sensing images</subject><subject>Rotation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtLxDAQDqKgrP4CLwXPXfNq0xzX-loQVlzFY0jS6ZKy22iSPfjvzVoR5zLD8D1m-BC6JHhOCJbXi7a9W6_nFFM8Z5gTTKsjdEZJLUtWsfr433yKLmIccK4mrypxht4XwbgUdPgqV8HBmKArVmYAm4pbSLk5PxZuLF5g5xMUaxijGzfFcqc3EIsbHTM-I579Voei9T50btQJ4jk66fU2wsVvn6G3-7vX9rF8Wj0s28VTaTluUlkzJnhnaM86ShvRSKy10I01DZiemNoyKfJPVYc1sX3NpO0r0QsimWWEd4TN0HLS7bwe1Edwu_yK8tqpn4UPG6VDcnYLCte0tpwSIIA5p8ZUlRFSdg2uapAWstbVpPUR_OceYlKD34cxn68oF5RRivHBkU0oG3yMAfo_V4LVIRA1BaIOgajfQDLrcmI5APhjSCqoaDj7Bn82hTg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhou, Lin</creator><creator>Wei, Haoran</creator><creator>Li, Hao</creator><creator>Zhao, Wenzhe</creator><creator>Zhang, Yi</creator><creator>Zhang, Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5130-7219</orcidid><orcidid>https://orcid.org/0000-0003-2283-1895</orcidid><orcidid>https://orcid.org/0000-0002-6327-5023</orcidid><orcidid>https://orcid.org/0000-0003-2898-5633</orcidid></search><sort><creationdate>2020</creationdate><title>Arbitrary-Oriented Object Detection in Remote Sensing Images Based on Polar Coordinates</title><author>Zhou, Lin ; Wei, Haoran ; Li, Hao ; Zhao, Wenzhe ; Zhang, Yi ; Zhang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-63374db2f3d2287890aa7a8cb8ebf1b6c3973045d0a1cf639cf57f7193c314d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>anchor free</topic><topic>Angles (geometry)</topic><topic>Cartesian coordinates</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Geometric constraints</topic><topic>Model accuracy</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>oriented detection</topic><topic>Parameters</topic><topic>Polar coordinates</topic><topic>Proposals</topic><topic>Regression models</topic><topic>Remote sensing</topic><topic>Remote sensing images</topic><topic>Rotation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Wei, Haoran</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Zhao, Wenzhe</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Lin</au><au>Wei, Haoran</au><au>Li, Hao</au><au>Zhao, Wenzhe</au><au>Zhang, Yi</au><au>Zhang, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arbitrary-Oriented Object Detection in Remote Sensing Images Based on Polar Coordinates</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>223373</spage><epage>223384</epage><pages>223373-223384</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Arbitrary-oriented object detection is an important task in the field of remote sensing object detection. Existing studies have shown that the polar coordinate system has obvious advantages in dealing with the problem of rotating object modeling, that is, using fewer parameters to achieve more accurate rotating object detection. However, present state-of-the-art detectors based on deep learning are all modeled in Cartesian coordinates. In this article, we introduce the polar coordinate system to the deep learning detector for the first time, and propose an anchor free Polar Remote Sensing Object Detector (P-RSDet), which can achieve competitive detection accuracy via using simpler object representation model and less regression parameters. In P-RSDet method, arbitrary-oriented object detection can be achieved by predicting the center point and regressing one polar radius and two polar angles. Besides, in order to express the geometric constraint relationship between the polar radius and the polar angle, a Polar Ring Area Loss function is proposed to improve the prediction accuracy of the corner position. Experiments on DOTA, UCAS-AOD and NWPU VHR-10 datasets show that our P-RSDet achieves state-of-the-art performances with simpler model and less regression parameters.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3041025</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5130-7219</orcidid><orcidid>https://orcid.org/0000-0003-2283-1895</orcidid><orcidid>https://orcid.org/0000-0002-6327-5023</orcidid><orcidid>https://orcid.org/0000-0003-2898-5633</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.223373-223384
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2472322001
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects anchor free
Angles (geometry)
Cartesian coordinates
Deep learning
Detectors
Feature extraction
Geometric constraints
Model accuracy
Object detection
Object recognition
oriented detection
Parameters
Polar coordinates
Proposals
Regression models
Remote sensing
Remote sensing images
Rotation
title Arbitrary-Oriented Object Detection in Remote Sensing Images Based on Polar Coordinates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arbitrary-Oriented%20Object%20Detection%20in%20Remote%20Sensing%20Images%20Based%20on%20Polar%20Coordinates&rft.jtitle=IEEE%20access&rft.au=Zhou,%20Lin&rft.date=2020&rft.volume=8&rft.spage=223373&rft.epage=223384&rft.pages=223373-223384&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3041025&rft_dat=%3Cproquest_ieee_%3E2472322001%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472322001&rft_id=info:pmid/&rft_ieee_id=9272784&rft_doaj_id=oai_doaj_org_article_0626c421e1e0442bb55b799d8056e9ce&rfr_iscdi=true