Finite-Time L2-Gain Asynchronous Control for Continuous-Time Positive Hidden Markov Jump Systems via T-S Fuzzy Model Approach
This article investigates the finite-time asynchronous control problem for continuous-time positive hidden Markov jump systems (HMJSs) by using the Takagi-Sugeno fuzzy model method. Different from the existing methods, the Markov jump systems under consideration are considered with the hidden Markov...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2021-01, Vol.51 (1), p.77-87 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article investigates the finite-time asynchronous control problem for continuous-time positive hidden Markov jump systems (HMJSs) by using the Takagi-Sugeno fuzzy model method. Different from the existing methods, the Markov jump systems under consideration are considered with the hidden Markov model in the continuous-time case, that is, the Markov model consists of the hidden state and the observed state. We aim to derive a suitable controller that depends on the observation mode which makes the closed-loop fuzzy HMJSs be stochastically finite-time bounded and positive, and fulfill the given L_{2} performance index. Applying the stochastic Lyapunov-Krasovskii functional (SLKF) methods, we establish sufficient conditions to obtain the finite-time state-feedback controller. Finally, a Lotka-Volterra population model is used to show the feasibility and validity of the main results. |
---|---|
ISSN: | 2168-2267 2168-2275 |
DOI: | 10.1109/TCYB.2020.2996743 |