SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES AND RANDOM WALKS WITH WEIBULL INCREMENTS

We study sample path large deviations for Lévy processes and random walks with heavy-tailed jump-size distributions that are of Weibull type. The sharpness and applicability of these results are illustrated by a counterexample proving the nonexistence of a full LDP in the J₁ topology, and by an appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2020-12, Vol.30 (6), p.2695-2739
Hauptverfasser: Bazhba, Mihail, Blanchet, Jose, Rhee, Chang-Han, Zwart, Bert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2739
container_issue 6
container_start_page 2695
container_title The Annals of applied probability
container_volume 30
creator Bazhba, Mihail
Blanchet, Jose
Rhee, Chang-Han
Zwart, Bert
description We study sample path large deviations for Lévy processes and random walks with heavy-tailed jump-size distributions that are of Weibull type. The sharpness and applicability of these results are illustrated by a counterexample proving the nonexistence of a full LDP in the J₁ topology, and by an application to a first passage problem.
doi_str_mv 10.1214/20-AAP1570
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2472174453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27136077</jstor_id><sourcerecordid>27136077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-b9ee7c68afb953bfb5d712794676a56a74c0d2af898e4497899d614d8569fe463</originalsourceid><addsrcrecordid>eNo90MtKw0AUBuBBFKzVjXthwJ0QnZnMdTmm0zY4TUKStnQVcgWLmpq0Cx_B5_LFjLS4OWfznQs_ALcYPWKC6RNBjtYRZgKdgRHBXDpSuOIcjDBiyGGY00tw1fdbhJCiSozAJtGLyBoY6XQOrY5nBk7MytepHwYJnIYxtD_fqw2M4tAzSWISqIMJjIcSLuBa25cErv1hdG3856W10A-82CxMkCbX4KLJ3_r65tTHYDk1qTd3bDjzPW2dkki8dwpV16LkMm8KxdyiKVglMBGKcsFzxnNBS1SRvJFK1nR4WSpVcUwrybhqasrdMbg_7t117eeh7vfZtj10H8PJjFBBsKCUuYN6OKqya_u-q5ts172-591XhlH2F11GUHaKbsB3R7zt9233L4nALkdCuL_iP2Hy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472174453</pqid></control><display><type>article</type><title>SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES AND RANDOM WALKS WITH WEIBULL INCREMENTS</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Bazhba, Mihail ; Blanchet, Jose ; Rhee, Chang-Han ; Zwart, Bert</creator><creatorcontrib>Bazhba, Mihail ; Blanchet, Jose ; Rhee, Chang-Han ; Zwart, Bert</creatorcontrib><description>We study sample path large deviations for Lévy processes and random walks with heavy-tailed jump-size distributions that are of Weibull type. The sharpness and applicability of these results are illustrated by a counterexample proving the nonexistence of a full LDP in the J₁ topology, and by an application to a first passage problem.</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/20-AAP1570</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Deviation ; Random walk ; Random walk theory ; Sharpness ; Stochastic models ; Topology</subject><ispartof>The Annals of applied probability, 2020-12, Vol.30 (6), p.2695-2739</ispartof><rights>Institute of Mathematical Statistics, 2020</rights><rights>Copyright Institute of Mathematical Statistics Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-b9ee7c68afb953bfb5d712794676a56a74c0d2af898e4497899d614d8569fe463</citedby><cites>FETCH-LOGICAL-c281t-b9ee7c68afb953bfb5d712794676a56a74c0d2af898e4497899d614d8569fe463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27136077$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27136077$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Bazhba, Mihail</creatorcontrib><creatorcontrib>Blanchet, Jose</creatorcontrib><creatorcontrib>Rhee, Chang-Han</creatorcontrib><creatorcontrib>Zwart, Bert</creatorcontrib><title>SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES AND RANDOM WALKS WITH WEIBULL INCREMENTS</title><title>The Annals of applied probability</title><description>We study sample path large deviations for Lévy processes and random walks with heavy-tailed jump-size distributions that are of Weibull type. The sharpness and applicability of these results are illustrated by a counterexample proving the nonexistence of a full LDP in the J₁ topology, and by an application to a first passage problem.</description><subject>Deviation</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Sharpness</subject><subject>Stochastic models</subject><subject>Topology</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo90MtKw0AUBuBBFKzVjXthwJ0QnZnMdTmm0zY4TUKStnQVcgWLmpq0Cx_B5_LFjLS4OWfznQs_ALcYPWKC6RNBjtYRZgKdgRHBXDpSuOIcjDBiyGGY00tw1fdbhJCiSozAJtGLyBoY6XQOrY5nBk7MytepHwYJnIYxtD_fqw2M4tAzSWISqIMJjIcSLuBa25cErv1hdG3856W10A-82CxMkCbX4KLJ3_r65tTHYDk1qTd3bDjzPW2dkki8dwpV16LkMm8KxdyiKVglMBGKcsFzxnNBS1SRvJFK1nR4WSpVcUwrybhqasrdMbg_7t117eeh7vfZtj10H8PJjFBBsKCUuYN6OKqya_u-q5ts172-591XhlH2F11GUHaKbsB3R7zt9233L4nALkdCuL_iP2Hy</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Bazhba, Mihail</creator><creator>Blanchet, Jose</creator><creator>Rhee, Chang-Han</creator><creator>Zwart, Bert</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20201201</creationdate><title>SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES AND RANDOM WALKS WITH WEIBULL INCREMENTS</title><author>Bazhba, Mihail ; Blanchet, Jose ; Rhee, Chang-Han ; Zwart, Bert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-b9ee7c68afb953bfb5d712794676a56a74c0d2af898e4497899d614d8569fe463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deviation</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Sharpness</topic><topic>Stochastic models</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazhba, Mihail</creatorcontrib><creatorcontrib>Blanchet, Jose</creatorcontrib><creatorcontrib>Rhee, Chang-Han</creatorcontrib><creatorcontrib>Zwart, Bert</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazhba, Mihail</au><au>Blanchet, Jose</au><au>Rhee, Chang-Han</au><au>Zwart, Bert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES AND RANDOM WALKS WITH WEIBULL INCREMENTS</atitle><jtitle>The Annals of applied probability</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><spage>2695</spage><epage>2739</epage><pages>2695-2739</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>We study sample path large deviations for Lévy processes and random walks with heavy-tailed jump-size distributions that are of Weibull type. The sharpness and applicability of these results are illustrated by a counterexample proving the nonexistence of a full LDP in the J₁ topology, and by an application to a first passage problem.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/20-AAP1570</doi><tpages>45</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2020-12, Vol.30 (6), p.2695-2739
issn 1050-5164
2168-8737
language eng
recordid cdi_proquest_journals_2472174453
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects Deviation
Random walk
Random walk theory
Sharpness
Stochastic models
Topology
title SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES AND RANDOM WALKS WITH WEIBULL INCREMENTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A45%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAMPLE%20PATH%20LARGE%20DEVIATIONS%20FOR%20L%C3%89VY%20PROCESSES%20AND%20RANDOM%20WALKS%20WITH%20WEIBULL%20INCREMENTS&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Bazhba,%20Mihail&rft.date=2020-12-01&rft.volume=30&rft.issue=6&rft.spage=2695&rft.epage=2739&rft.pages=2695-2739&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/20-AAP1570&rft_dat=%3Cjstor_proqu%3E27136077%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472174453&rft_id=info:pmid/&rft_jstor_id=27136077&rfr_iscdi=true