A Risk Prediction Flowchart of Vancomycin-Induced Acute Kidney Injury to Use When Starting Vancomycin Administration: A Multicenter Retrospective Study
We previously constructed a risk prediction model of vancomycin (VCM)-associated nephrotoxicity for use when performing initial therapeutic drug monitoring (TDM), using decision tree analysis. However, we could not build a model to be used at the time of initial administration due to insufficient sa...
Gespeichert in:
Veröffentlicht in: | Antibiotics (Basel) 2020-12, Vol.9 (12), p.920, Article 920 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 920 |
container_title | Antibiotics (Basel) |
container_volume | 9 |
creator | Miyai, Takayuki Imai, Shungo Kashiwagi, Hitoshi Sato, Yuki Kadomura, Shota Yoshida, Kenji Yoshimura, Eri Teraya, Toshiaki Tsujimoto, Takashi Kawamoto, Yukari Itoh, Tatsuya Ueno, Hidefumi Goto, Yoshikazu Takekuma, Yoh Sugawara, Mitsuru |
description | We previously constructed a risk prediction model of vancomycin (VCM)-associated nephrotoxicity for use when performing initial therapeutic drug monitoring (TDM), using decision tree analysis. However, we could not build a model to be used at the time of initial administration due to insufficient sample size. Therefore, we performed a multicenter study at four hospitals in Japan. We investigated patients who received VCM intravenously at a standard dose from the first day until the initial TDM from November 2011 to March 2019. Acute kidney injury (AKI) was defined according to the criteria established by the "Kidney disease: Improving global outcomes" group. We extracted potential risk factors that could be evaluated on the day of initial administration and constructed a flowchart using a chi-squared automatic interaction detection algorithm. Among 843 patients, 115 (13.6%) developed AKI. The flowchart comprised three splitting variables (concomitant drugs (vasopressor drugs and tazobactam/piperacillin) and body mass index >= 30) and four subgroups. The incidence rates of AKI ranged from 9.34 to 36.8%, and they were classified as low-, intermediate-, and high-risk groups. The accuracy of flowchart was judged appropriate (86.4%). We successfully constructed a simple flowchart predicting VCM-induced AKI to be used when starting VCM administration. |
doi_str_mv | 10.3390/antibiotics9120920 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471974096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4ccbbef038f44dcaa273b4f55a166dc8</doaj_id><sourcerecordid>2471974096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-62c70b88a894af17eb47db7be3031e03ea63c99e1f1486d1e973081ffaa5b83f3</originalsourceid><addsrcrecordid>eNqNks1uEzEUhUcIRKvSF2CBLLFEAXs84x8WSFFEIaIIVCgsRx77OnFI7NT2tMqT9HXrNCVKxQZvbNnnO9fXPlX1kuC3lEr8Tvnsehey00mSGssaP6mOa8zliFFRPz1YH1WnKS1wGZJQgcXz6ohS2taiEcfV7RhduPQHfY9gnM4ueHS2DDd6rmJGwaJfyuuw2mjnR1NvBg0GjfWQAX1xxsMGTf1iiBuUA7pMgH7PwaMfubDOzw5YNDYr513KUW1LvEdj9HVYlruDzxDRBeQY0hpK_Wso_GA2L6pnVi0TnD7MJ9Xl2cefk8-j82-fppPx-UgzzPKI1ZrjXgglZKMs4dA33PS8B4opAUxBMaqlBGJJI5ghIDnFglirVNsLaulJNd35mqAW3Tq6lYqbLijX3W-EOOu23egldI3WfQ8WU2Gbxmilak77xratIowZLYrXh53XeuhXYLbNRbV8ZPr4xLt5NwvXHeeMtbwtBq8fDGK4GiDlbhGG6Ev_Xd1wInmDJSuqeqfS5dFSBLuvQHC3zUb3bzYK9OrwbnvkbxKKQOwEN9AHm7QDr2EvK-FhmDDZbGOEycTl-4-chMHngr75f5TeAbpj3OA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471974096</pqid></control><display><type>article</type><title>A Risk Prediction Flowchart of Vancomycin-Induced Acute Kidney Injury to Use When Starting Vancomycin Administration: A Multicenter Retrospective Study</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Miyai, Takayuki ; Imai, Shungo ; Kashiwagi, Hitoshi ; Sato, Yuki ; Kadomura, Shota ; Yoshida, Kenji ; Yoshimura, Eri ; Teraya, Toshiaki ; Tsujimoto, Takashi ; Kawamoto, Yukari ; Itoh, Tatsuya ; Ueno, Hidefumi ; Goto, Yoshikazu ; Takekuma, Yoh ; Sugawara, Mitsuru</creator><creatorcontrib>Miyai, Takayuki ; Imai, Shungo ; Kashiwagi, Hitoshi ; Sato, Yuki ; Kadomura, Shota ; Yoshida, Kenji ; Yoshimura, Eri ; Teraya, Toshiaki ; Tsujimoto, Takashi ; Kawamoto, Yukari ; Itoh, Tatsuya ; Ueno, Hidefumi ; Goto, Yoshikazu ; Takekuma, Yoh ; Sugawara, Mitsuru</creatorcontrib><description>We previously constructed a risk prediction model of vancomycin (VCM)-associated nephrotoxicity for use when performing initial therapeutic drug monitoring (TDM), using decision tree analysis. However, we could not build a model to be used at the time of initial administration due to insufficient sample size. Therefore, we performed a multicenter study at four hospitals in Japan. We investigated patients who received VCM intravenously at a standard dose from the first day until the initial TDM from November 2011 to March 2019. Acute kidney injury (AKI) was defined according to the criteria established by the "Kidney disease: Improving global outcomes" group. We extracted potential risk factors that could be evaluated on the day of initial administration and constructed a flowchart using a chi-squared automatic interaction detection algorithm. Among 843 patients, 115 (13.6%) developed AKI. The flowchart comprised three splitting variables (concomitant drugs (vasopressor drugs and tazobactam/piperacillin) and body mass index >= 30) and four subgroups. The incidence rates of AKI ranged from 9.34 to 36.8%, and they were classified as low-, intermediate-, and high-risk groups. The accuracy of flowchart was judged appropriate (86.4%). We successfully constructed a simple flowchart predicting VCM-induced AKI to be used when starting VCM administration.</description><identifier>ISSN: 2079-6382</identifier><identifier>EISSN: 2079-6382</identifier><identifier>DOI: 10.3390/antibiotics9120920</identifier><identifier>PMID: 33352848</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>acute kidney injury ; Algorithms ; Body mass ; Body mass index ; Body size ; Cardiovascular disease ; Creatinine ; Decision analysis ; decision tree analysis ; Decision trees ; Drug dosages ; Drugs ; Flow charts ; Infectious Diseases ; Kidney diseases ; Kidneys ; Life Sciences & Biomedicine ; Patients ; Pharmacists ; Pharmacology & Pharmacy ; Piperacillin ; Prediction models ; Regression analysis ; Risk analysis ; Risk factors ; Risk groups ; Science & Technology ; Staphylococcus infections ; Subgroups ; Tazobactam ; therapeutic drug monitoring ; Vancomycin ; Variables</subject><ispartof>Antibiotics (Basel), 2020-12, Vol.9 (12), p.920, Article 920</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000601694000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c606t-62c70b88a894af17eb47db7be3031e03ea63c99e1f1486d1e973081ffaa5b83f3</citedby><cites>FETCH-LOGICAL-c606t-62c70b88a894af17eb47db7be3031e03ea63c99e1f1486d1e973081ffaa5b83f3</cites><orcidid>0000-0001-6385-9988 ; 0000-0002-4325-0785 ; 0000-0001-5706-613X ; 0000-0001-5350-2950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766575/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766575/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33352848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miyai, Takayuki</creatorcontrib><creatorcontrib>Imai, Shungo</creatorcontrib><creatorcontrib>Kashiwagi, Hitoshi</creatorcontrib><creatorcontrib>Sato, Yuki</creatorcontrib><creatorcontrib>Kadomura, Shota</creatorcontrib><creatorcontrib>Yoshida, Kenji</creatorcontrib><creatorcontrib>Yoshimura, Eri</creatorcontrib><creatorcontrib>Teraya, Toshiaki</creatorcontrib><creatorcontrib>Tsujimoto, Takashi</creatorcontrib><creatorcontrib>Kawamoto, Yukari</creatorcontrib><creatorcontrib>Itoh, Tatsuya</creatorcontrib><creatorcontrib>Ueno, Hidefumi</creatorcontrib><creatorcontrib>Goto, Yoshikazu</creatorcontrib><creatorcontrib>Takekuma, Yoh</creatorcontrib><creatorcontrib>Sugawara, Mitsuru</creatorcontrib><title>A Risk Prediction Flowchart of Vancomycin-Induced Acute Kidney Injury to Use When Starting Vancomycin Administration: A Multicenter Retrospective Study</title><title>Antibiotics (Basel)</title><addtitle>ANTIBIOTICS-BASEL</addtitle><addtitle>Antibiotics (Basel)</addtitle><description>We previously constructed a risk prediction model of vancomycin (VCM)-associated nephrotoxicity for use when performing initial therapeutic drug monitoring (TDM), using decision tree analysis. However, we could not build a model to be used at the time of initial administration due to insufficient sample size. Therefore, we performed a multicenter study at four hospitals in Japan. We investigated patients who received VCM intravenously at a standard dose from the first day until the initial TDM from November 2011 to March 2019. Acute kidney injury (AKI) was defined according to the criteria established by the "Kidney disease: Improving global outcomes" group. We extracted potential risk factors that could be evaluated on the day of initial administration and constructed a flowchart using a chi-squared automatic interaction detection algorithm. Among 843 patients, 115 (13.6%) developed AKI. The flowchart comprised three splitting variables (concomitant drugs (vasopressor drugs and tazobactam/piperacillin) and body mass index >= 30) and four subgroups. The incidence rates of AKI ranged from 9.34 to 36.8%, and they were classified as low-, intermediate-, and high-risk groups. The accuracy of flowchart was judged appropriate (86.4%). We successfully constructed a simple flowchart predicting VCM-induced AKI to be used when starting VCM administration.</description><subject>acute kidney injury</subject><subject>Algorithms</subject><subject>Body mass</subject><subject>Body mass index</subject><subject>Body size</subject><subject>Cardiovascular disease</subject><subject>Creatinine</subject><subject>Decision analysis</subject><subject>decision tree analysis</subject><subject>Decision trees</subject><subject>Drug dosages</subject><subject>Drugs</subject><subject>Flow charts</subject><subject>Infectious Diseases</subject><subject>Kidney diseases</subject><subject>Kidneys</subject><subject>Life Sciences & Biomedicine</subject><subject>Patients</subject><subject>Pharmacists</subject><subject>Pharmacology & Pharmacy</subject><subject>Piperacillin</subject><subject>Prediction models</subject><subject>Regression analysis</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Risk groups</subject><subject>Science & Technology</subject><subject>Staphylococcus infections</subject><subject>Subgroups</subject><subject>Tazobactam</subject><subject>therapeutic drug monitoring</subject><subject>Vancomycin</subject><subject>Variables</subject><issn>2079-6382</issn><issn>2079-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1uEzEUhUcIRKvSF2CBLLFEAXs84x8WSFFEIaIIVCgsRx77OnFI7NT2tMqT9HXrNCVKxQZvbNnnO9fXPlX1kuC3lEr8Tvnsehey00mSGssaP6mOa8zliFFRPz1YH1WnKS1wGZJQgcXz6ohS2taiEcfV7RhduPQHfY9gnM4ueHS2DDd6rmJGwaJfyuuw2mjnR1NvBg0GjfWQAX1xxsMGTf1iiBuUA7pMgH7PwaMfubDOzw5YNDYr513KUW1LvEdj9HVYlruDzxDRBeQY0hpK_Wso_GA2L6pnVi0TnD7MJ9Xl2cefk8-j82-fppPx-UgzzPKI1ZrjXgglZKMs4dA33PS8B4opAUxBMaqlBGJJI5ghIDnFglirVNsLaulJNd35mqAW3Tq6lYqbLijX3W-EOOu23egldI3WfQ8WU2Gbxmilak77xratIowZLYrXh53XeuhXYLbNRbV8ZPr4xLt5NwvXHeeMtbwtBq8fDGK4GiDlbhGG6Ev_Xd1wInmDJSuqeqfS5dFSBLuvQHC3zUb3bzYK9OrwbnvkbxKKQOwEN9AHm7QDr2EvK-FhmDDZbGOEycTl-4-chMHngr75f5TeAbpj3OA</recordid><startdate>20201218</startdate><enddate>20201218</enddate><creator>Miyai, Takayuki</creator><creator>Imai, Shungo</creator><creator>Kashiwagi, Hitoshi</creator><creator>Sato, Yuki</creator><creator>Kadomura, Shota</creator><creator>Yoshida, Kenji</creator><creator>Yoshimura, Eri</creator><creator>Teraya, Toshiaki</creator><creator>Tsujimoto, Takashi</creator><creator>Kawamoto, Yukari</creator><creator>Itoh, Tatsuya</creator><creator>Ueno, Hidefumi</creator><creator>Goto, Yoshikazu</creator><creator>Takekuma, Yoh</creator><creator>Sugawara, Mitsuru</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6385-9988</orcidid><orcidid>https://orcid.org/0000-0002-4325-0785</orcidid><orcidid>https://orcid.org/0000-0001-5706-613X</orcidid><orcidid>https://orcid.org/0000-0001-5350-2950</orcidid></search><sort><creationdate>20201218</creationdate><title>A Risk Prediction Flowchart of Vancomycin-Induced Acute Kidney Injury to Use When Starting Vancomycin Administration: A Multicenter Retrospective Study</title><author>Miyai, Takayuki ; Imai, Shungo ; Kashiwagi, Hitoshi ; Sato, Yuki ; Kadomura, Shota ; Yoshida, Kenji ; Yoshimura, Eri ; Teraya, Toshiaki ; Tsujimoto, Takashi ; Kawamoto, Yukari ; Itoh, Tatsuya ; Ueno, Hidefumi ; Goto, Yoshikazu ; Takekuma, Yoh ; Sugawara, Mitsuru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-62c70b88a894af17eb47db7be3031e03ea63c99e1f1486d1e973081ffaa5b83f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>acute kidney injury</topic><topic>Algorithms</topic><topic>Body mass</topic><topic>Body mass index</topic><topic>Body size</topic><topic>Cardiovascular disease</topic><topic>Creatinine</topic><topic>Decision analysis</topic><topic>decision tree analysis</topic><topic>Decision trees</topic><topic>Drug dosages</topic><topic>Drugs</topic><topic>Flow charts</topic><topic>Infectious Diseases</topic><topic>Kidney diseases</topic><topic>Kidneys</topic><topic>Life Sciences & Biomedicine</topic><topic>Patients</topic><topic>Pharmacists</topic><topic>Pharmacology & Pharmacy</topic><topic>Piperacillin</topic><topic>Prediction models</topic><topic>Regression analysis</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Risk groups</topic><topic>Science & Technology</topic><topic>Staphylococcus infections</topic><topic>Subgroups</topic><topic>Tazobactam</topic><topic>therapeutic drug monitoring</topic><topic>Vancomycin</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyai, Takayuki</creatorcontrib><creatorcontrib>Imai, Shungo</creatorcontrib><creatorcontrib>Kashiwagi, Hitoshi</creatorcontrib><creatorcontrib>Sato, Yuki</creatorcontrib><creatorcontrib>Kadomura, Shota</creatorcontrib><creatorcontrib>Yoshida, Kenji</creatorcontrib><creatorcontrib>Yoshimura, Eri</creatorcontrib><creatorcontrib>Teraya, Toshiaki</creatorcontrib><creatorcontrib>Tsujimoto, Takashi</creatorcontrib><creatorcontrib>Kawamoto, Yukari</creatorcontrib><creatorcontrib>Itoh, Tatsuya</creatorcontrib><creatorcontrib>Ueno, Hidefumi</creatorcontrib><creatorcontrib>Goto, Yoshikazu</creatorcontrib><creatorcontrib>Takekuma, Yoh</creatorcontrib><creatorcontrib>Sugawara, Mitsuru</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Antibiotics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyai, Takayuki</au><au>Imai, Shungo</au><au>Kashiwagi, Hitoshi</au><au>Sato, Yuki</au><au>Kadomura, Shota</au><au>Yoshida, Kenji</au><au>Yoshimura, Eri</au><au>Teraya, Toshiaki</au><au>Tsujimoto, Takashi</au><au>Kawamoto, Yukari</au><au>Itoh, Tatsuya</au><au>Ueno, Hidefumi</au><au>Goto, Yoshikazu</au><au>Takekuma, Yoh</au><au>Sugawara, Mitsuru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Risk Prediction Flowchart of Vancomycin-Induced Acute Kidney Injury to Use When Starting Vancomycin Administration: A Multicenter Retrospective Study</atitle><jtitle>Antibiotics (Basel)</jtitle><stitle>ANTIBIOTICS-BASEL</stitle><addtitle>Antibiotics (Basel)</addtitle><date>2020-12-18</date><risdate>2020</risdate><volume>9</volume><issue>12</issue><spage>920</spage><pages>920-</pages><artnum>920</artnum><issn>2079-6382</issn><eissn>2079-6382</eissn><abstract>We previously constructed a risk prediction model of vancomycin (VCM)-associated nephrotoxicity for use when performing initial therapeutic drug monitoring (TDM), using decision tree analysis. However, we could not build a model to be used at the time of initial administration due to insufficient sample size. Therefore, we performed a multicenter study at four hospitals in Japan. We investigated patients who received VCM intravenously at a standard dose from the first day until the initial TDM from November 2011 to March 2019. Acute kidney injury (AKI) was defined according to the criteria established by the "Kidney disease: Improving global outcomes" group. We extracted potential risk factors that could be evaluated on the day of initial administration and constructed a flowchart using a chi-squared automatic interaction detection algorithm. Among 843 patients, 115 (13.6%) developed AKI. The flowchart comprised three splitting variables (concomitant drugs (vasopressor drugs and tazobactam/piperacillin) and body mass index >= 30) and four subgroups. The incidence rates of AKI ranged from 9.34 to 36.8%, and they were classified as low-, intermediate-, and high-risk groups. The accuracy of flowchart was judged appropriate (86.4%). We successfully constructed a simple flowchart predicting VCM-induced AKI to be used when starting VCM administration.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33352848</pmid><doi>10.3390/antibiotics9120920</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6385-9988</orcidid><orcidid>https://orcid.org/0000-0002-4325-0785</orcidid><orcidid>https://orcid.org/0000-0001-5706-613X</orcidid><orcidid>https://orcid.org/0000-0001-5350-2950</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6382 |
ispartof | Antibiotics (Basel), 2020-12, Vol.9 (12), p.920, Article 920 |
issn | 2079-6382 2079-6382 |
language | eng |
recordid | cdi_proquest_journals_2471974096 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | acute kidney injury Algorithms Body mass Body mass index Body size Cardiovascular disease Creatinine Decision analysis decision tree analysis Decision trees Drug dosages Drugs Flow charts Infectious Diseases Kidney diseases Kidneys Life Sciences & Biomedicine Patients Pharmacists Pharmacology & Pharmacy Piperacillin Prediction models Regression analysis Risk analysis Risk factors Risk groups Science & Technology Staphylococcus infections Subgroups Tazobactam therapeutic drug monitoring Vancomycin Variables |
title | A Risk Prediction Flowchart of Vancomycin-Induced Acute Kidney Injury to Use When Starting Vancomycin Administration: A Multicenter Retrospective Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T21%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Risk%20Prediction%20Flowchart%20of%20Vancomycin-Induced%20Acute%20Kidney%20Injury%20to%20Use%20When%20Starting%20Vancomycin%20Administration:%20A%20Multicenter%20Retrospective%20Study&rft.jtitle=Antibiotics%20(Basel)&rft.au=Miyai,%20Takayuki&rft.date=2020-12-18&rft.volume=9&rft.issue=12&rft.spage=920&rft.pages=920-&rft.artnum=920&rft.issn=2079-6382&rft.eissn=2079-6382&rft_id=info:doi/10.3390/antibiotics9120920&rft_dat=%3Cproquest_cross%3E2471974096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471974096&rft_id=info:pmid/33352848&rft_doaj_id=oai_doaj_org_article_4ccbbef038f44dcaa273b4f55a166dc8&rfr_iscdi=true |