In-memory Learning with Analog Resistive Switching Memory: A Review and Perspective

In this article, we review the existing analog resistive switching memory (RSM) devices and their hardware technologies for in-memory learning, as well as their challenges and prospects. Since the characteristics of the devices are different for in-memory learning and digital memory applications, it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2021-01, Vol.109 (1), p.14-42
Hauptverfasser: Xi, Yue, Gao, Bin, Tang, Jianshi, Chen, An, Chang, Meng-Fan, Hu, Xiaobo Sharon, Spiegel, Jan Van Der, Qian, He, Wu, Huaqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 14
container_title Proceedings of the IEEE
container_volume 109
creator Xi, Yue
Gao, Bin
Tang, Jianshi
Chen, An
Chang, Meng-Fan
Hu, Xiaobo Sharon
Spiegel, Jan Van Der
Qian, He
Wu, Huaqiang
description In this article, we review the existing analog resistive switching memory (RSM) devices and their hardware technologies for in-memory learning, as well as their challenges and prospects. Since the characteristics of the devices are different for in-memory learning and digital memory applications, it is important to have an in-depth understanding across different layers from devices and circuits to architectures and algorithms. First, based on a top-down view from architecture to devices for analog computing, we define the main figures of merit (FoMs) and perform a comprehensive analysis of analog RSM hardware including the basic device characteristics, hardware algorithms, and the corresponding mapping methods for device arrays, as well as the architecture and circuit design considerations for neural networks. Second, we classify the FoMs of analog RSM devices into two levels. Level 1 FoMs are essential for achieving the functionality of a system (e.g., linearity, symmetry, dynamic range, level numbers, fluctuation, variability, and yield). Level 2 FoMs are those that make a functional system more efficient and reliable (e.g., area, operational voltage, energy consumption, speed, endurance, retention, and compatibility with back-end-of-line processing). By constructing a device-to-application simulation framework, we perform an in-depth analysis of how these FoMs influence in-memory learning and give a target list of the device requirements. Lastly, we evaluate the main FoMs of most existing devices with analog characteristics and review optimization methods from programming schemes to materials and device structures. The key challenges and prospects from the device to system level for analog RSM devices are discussed.
doi_str_mv 10.1109/JPROC.2020.3004543
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2471919302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9138706</ieee_id><sourcerecordid>2471919302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-1c93c17ff5a709db215614c389c55458baf5ae882801483298b05f664adc20b63</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-Ab008bw4_dzWGyF-YDAQ0HPTLV1YIrvYLhD-vbtAPE0y7_NOJg9C9wR6hIB--phMx4MeBQo9BsAFZxeoQ4RQCaVCXqIOAFGJpkRfo5sYVwDAhGQdNBuWydqvq3DAI29DWZQLvC_qJe6X9qda4KmPRayLncezZu2Wbf555J9xv0l3hd9jW87xxIe48a5Fb9FVbn-ivzvPLvp-ffkavCej8dtw0B8ljnFeJ8Rp5kia58KmoOcZJUIS7pjSTgguVGabxCtFFRCuGNUqA5FLye3cUcgk66LH091NqH63PtZmVW1D83c0lKdEE82ANhQ9US5UMQafm00o1jYcDAHTyjNHeaaVZ87ymtLDqVR47_8LmjCVgmR_gHtp3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471919302</pqid></control><display><type>article</type><title>In-memory Learning with Analog Resistive Switching Memory: A Review and Perspective</title><source>IEEE Electronic Library (IEL)</source><creator>Xi, Yue ; Gao, Bin ; Tang, Jianshi ; Chen, An ; Chang, Meng-Fan ; Hu, Xiaobo Sharon ; Spiegel, Jan Van Der ; Qian, He ; Wu, Huaqiang</creator><creatorcontrib>Xi, Yue ; Gao, Bin ; Tang, Jianshi ; Chen, An ; Chang, Meng-Fan ; Hu, Xiaobo Sharon ; Spiegel, Jan Van Der ; Qian, He ; Wu, Huaqiang</creatorcontrib><description>In this article, we review the existing analog resistive switching memory (RSM) devices and their hardware technologies for in-memory learning, as well as their challenges and prospects. Since the characteristics of the devices are different for in-memory learning and digital memory applications, it is important to have an in-depth understanding across different layers from devices and circuits to architectures and algorithms. First, based on a top-down view from architecture to devices for analog computing, we define the main figures of merit (FoMs) and perform a comprehensive analysis of analog RSM hardware including the basic device characteristics, hardware algorithms, and the corresponding mapping methods for device arrays, as well as the architecture and circuit design considerations for neural networks. Second, we classify the FoMs of analog RSM devices into two levels. Level 1 FoMs are essential for achieving the functionality of a system (e.g., linearity, symmetry, dynamic range, level numbers, fluctuation, variability, and yield). Level 2 FoMs are those that make a functional system more efficient and reliable (e.g., area, operational voltage, energy consumption, speed, endurance, retention, and compatibility with back-end-of-line processing). By constructing a device-to-application simulation framework, we perform an in-depth analysis of how these FoMs influence in-memory learning and give a target list of the device requirements. Lastly, we evaluate the main FoMs of most existing devices with analog characteristics and review optimization methods from programming schemes to materials and device structures. The key challenges and prospects from the device to system level for analog RSM devices are discussed.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2020.3004543</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Analog resistive switching memory (RSM) ; Artificial intelligence ; Circuit design ; Computer architecture ; Conductivity measurement ; Energy consumption ; Hardware ; in-memory learning ; Learning ; Learning systems ; Linearity ; Memory devices ; Neural networks ; neuromorphic computing ; Neuromorphic engineering ; Optimization ; Performance evaluation ; Random access memory ; resistive switching ; Switching</subject><ispartof>Proceedings of the IEEE, 2021-01, Vol.109 (1), p.14-42</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-1c93c17ff5a709db215614c389c55458baf5ae882801483298b05f664adc20b63</citedby><cites>FETCH-LOGICAL-c344t-1c93c17ff5a709db215614c389c55458baf5ae882801483298b05f664adc20b63</cites><orcidid>0000-0002-6636-9738 ; 0000-0002-2417-983X ; 0000-0001-8359-7997 ; 0000-0001-8369-0067 ; 0000-0001-5027-7938 ; 0000-0002-6070-0717 ; 0000-0001-6905-6350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9138706$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9138706$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xi, Yue</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Chen, An</creatorcontrib><creatorcontrib>Chang, Meng-Fan</creatorcontrib><creatorcontrib>Hu, Xiaobo Sharon</creatorcontrib><creatorcontrib>Spiegel, Jan Van Der</creatorcontrib><creatorcontrib>Qian, He</creatorcontrib><creatorcontrib>Wu, Huaqiang</creatorcontrib><title>In-memory Learning with Analog Resistive Switching Memory: A Review and Perspective</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>In this article, we review the existing analog resistive switching memory (RSM) devices and their hardware technologies for in-memory learning, as well as their challenges and prospects. Since the characteristics of the devices are different for in-memory learning and digital memory applications, it is important to have an in-depth understanding across different layers from devices and circuits to architectures and algorithms. First, based on a top-down view from architecture to devices for analog computing, we define the main figures of merit (FoMs) and perform a comprehensive analysis of analog RSM hardware including the basic device characteristics, hardware algorithms, and the corresponding mapping methods for device arrays, as well as the architecture and circuit design considerations for neural networks. Second, we classify the FoMs of analog RSM devices into two levels. Level 1 FoMs are essential for achieving the functionality of a system (e.g., linearity, symmetry, dynamic range, level numbers, fluctuation, variability, and yield). Level 2 FoMs are those that make a functional system more efficient and reliable (e.g., area, operational voltage, energy consumption, speed, endurance, retention, and compatibility with back-end-of-line processing). By constructing a device-to-application simulation framework, we perform an in-depth analysis of how these FoMs influence in-memory learning and give a target list of the device requirements. Lastly, we evaluate the main FoMs of most existing devices with analog characteristics and review optimization methods from programming schemes to materials and device structures. The key challenges and prospects from the device to system level for analog RSM devices are discussed.</description><subject>Algorithms</subject><subject>Analog resistive switching memory (RSM)</subject><subject>Artificial intelligence</subject><subject>Circuit design</subject><subject>Computer architecture</subject><subject>Conductivity measurement</subject><subject>Energy consumption</subject><subject>Hardware</subject><subject>in-memory learning</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Linearity</subject><subject>Memory devices</subject><subject>Neural networks</subject><subject>neuromorphic computing</subject><subject>Neuromorphic engineering</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Random access memory</subject><subject>resistive switching</subject><subject>Switching</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-Ab008bw4_dzWGyF-YDAQ0HPTLV1YIrvYLhD-vbtAPE0y7_NOJg9C9wR6hIB--phMx4MeBQo9BsAFZxeoQ4RQCaVCXqIOAFGJpkRfo5sYVwDAhGQdNBuWydqvq3DAI29DWZQLvC_qJe6X9qda4KmPRayLncezZu2Wbf555J9xv0l3hd9jW87xxIe48a5Fb9FVbn-ivzvPLvp-ffkavCej8dtw0B8ljnFeJ8Rp5kia58KmoOcZJUIS7pjSTgguVGabxCtFFRCuGNUqA5FLye3cUcgk66LH091NqH63PtZmVW1D83c0lKdEE82ANhQ9US5UMQafm00o1jYcDAHTyjNHeaaVZ87ymtLDqVR47_8LmjCVgmR_gHtp3Q</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Xi, Yue</creator><creator>Gao, Bin</creator><creator>Tang, Jianshi</creator><creator>Chen, An</creator><creator>Chang, Meng-Fan</creator><creator>Hu, Xiaobo Sharon</creator><creator>Spiegel, Jan Van Der</creator><creator>Qian, He</creator><creator>Wu, Huaqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6636-9738</orcidid><orcidid>https://orcid.org/0000-0002-2417-983X</orcidid><orcidid>https://orcid.org/0000-0001-8359-7997</orcidid><orcidid>https://orcid.org/0000-0001-8369-0067</orcidid><orcidid>https://orcid.org/0000-0001-5027-7938</orcidid><orcidid>https://orcid.org/0000-0002-6070-0717</orcidid><orcidid>https://orcid.org/0000-0001-6905-6350</orcidid></search><sort><creationdate>202101</creationdate><title>In-memory Learning with Analog Resistive Switching Memory: A Review and Perspective</title><author>Xi, Yue ; Gao, Bin ; Tang, Jianshi ; Chen, An ; Chang, Meng-Fan ; Hu, Xiaobo Sharon ; Spiegel, Jan Van Der ; Qian, He ; Wu, Huaqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-1c93c17ff5a709db215614c389c55458baf5ae882801483298b05f664adc20b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analog resistive switching memory (RSM)</topic><topic>Artificial intelligence</topic><topic>Circuit design</topic><topic>Computer architecture</topic><topic>Conductivity measurement</topic><topic>Energy consumption</topic><topic>Hardware</topic><topic>in-memory learning</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Linearity</topic><topic>Memory devices</topic><topic>Neural networks</topic><topic>neuromorphic computing</topic><topic>Neuromorphic engineering</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Random access memory</topic><topic>resistive switching</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi, Yue</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Tang, Jianshi</creatorcontrib><creatorcontrib>Chen, An</creatorcontrib><creatorcontrib>Chang, Meng-Fan</creatorcontrib><creatorcontrib>Hu, Xiaobo Sharon</creatorcontrib><creatorcontrib>Spiegel, Jan Van Der</creatorcontrib><creatorcontrib>Qian, He</creatorcontrib><creatorcontrib>Wu, Huaqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xi, Yue</au><au>Gao, Bin</au><au>Tang, Jianshi</au><au>Chen, An</au><au>Chang, Meng-Fan</au><au>Hu, Xiaobo Sharon</au><au>Spiegel, Jan Van Der</au><au>Qian, He</au><au>Wu, Huaqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-memory Learning with Analog Resistive Switching Memory: A Review and Perspective</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2021-01</date><risdate>2021</risdate><volume>109</volume><issue>1</issue><spage>14</spage><epage>42</epage><pages>14-42</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>In this article, we review the existing analog resistive switching memory (RSM) devices and their hardware technologies for in-memory learning, as well as their challenges and prospects. Since the characteristics of the devices are different for in-memory learning and digital memory applications, it is important to have an in-depth understanding across different layers from devices and circuits to architectures and algorithms. First, based on a top-down view from architecture to devices for analog computing, we define the main figures of merit (FoMs) and perform a comprehensive analysis of analog RSM hardware including the basic device characteristics, hardware algorithms, and the corresponding mapping methods for device arrays, as well as the architecture and circuit design considerations for neural networks. Second, we classify the FoMs of analog RSM devices into two levels. Level 1 FoMs are essential for achieving the functionality of a system (e.g., linearity, symmetry, dynamic range, level numbers, fluctuation, variability, and yield). Level 2 FoMs are those that make a functional system more efficient and reliable (e.g., area, operational voltage, energy consumption, speed, endurance, retention, and compatibility with back-end-of-line processing). By constructing a device-to-application simulation framework, we perform an in-depth analysis of how these FoMs influence in-memory learning and give a target list of the device requirements. Lastly, we evaluate the main FoMs of most existing devices with analog characteristics and review optimization methods from programming schemes to materials and device structures. The key challenges and prospects from the device to system level for analog RSM devices are discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2020.3004543</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-6636-9738</orcidid><orcidid>https://orcid.org/0000-0002-2417-983X</orcidid><orcidid>https://orcid.org/0000-0001-8359-7997</orcidid><orcidid>https://orcid.org/0000-0001-8369-0067</orcidid><orcidid>https://orcid.org/0000-0001-5027-7938</orcidid><orcidid>https://orcid.org/0000-0002-6070-0717</orcidid><orcidid>https://orcid.org/0000-0001-6905-6350</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2021-01, Vol.109 (1), p.14-42
issn 0018-9219
1558-2256
language eng
recordid cdi_proquest_journals_2471919302
source IEEE Electronic Library (IEL)
subjects Algorithms
Analog resistive switching memory (RSM)
Artificial intelligence
Circuit design
Computer architecture
Conductivity measurement
Energy consumption
Hardware
in-memory learning
Learning
Learning systems
Linearity
Memory devices
Neural networks
neuromorphic computing
Neuromorphic engineering
Optimization
Performance evaluation
Random access memory
resistive switching
Switching
title In-memory Learning with Analog Resistive Switching Memory: A Review and Perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T04%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-memory%20Learning%20with%20Analog%20Resistive%20Switching%20Memory:%20A%20Review%20and%20Perspective&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Xi,%20Yue&rft.date=2021-01&rft.volume=109&rft.issue=1&rft.spage=14&rft.epage=42&rft.pages=14-42&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2020.3004543&rft_dat=%3Cproquest_RIE%3E2471919302%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471919302&rft_id=info:pmid/&rft_ieee_id=9138706&rfr_iscdi=true