Gait Spatiotemporal Signal Analysis for Parkinson's Disease Detection and Severity Rating
Deep learning models are used to process and fuse raw data of gait-induced ground reaction force (GRF) for Parkinson's disease (PD) patients and healthy subjects with the aim to categorize PD severity. This is achieved by learning automatically, end-to-end, the spatiotemporal GRF signals, resul...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-01, Vol.21 (2), p.1838-1848 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1848 |
---|---|
container_issue | 2 |
container_start_page | 1838 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Alharthi, Abdullah S. Casson, Alexander J. Ozanyan, Krikor B. |
description | Deep learning models are used to process and fuse raw data of gait-induced ground reaction force (GRF) for Parkinson's disease (PD) patients and healthy subjects with the aim to categorize PD severity. This is achieved by learning automatically, end-to-end, the spatiotemporal GRF signals, resulting in an effective PD severity classification with mean performance F1-score of 95.5% and F1-score standard errors of 0.28%. Layer-wise relevance propagation (LRP) is used to interpret the models' output and provide insight into which features in the spatiotemporal gait GRF signals are most significant for the models' predictions. This allows their assignment to gait events, implying that while for the classification of healthy gait the heel strike and body balance are the most indicative gait elements, foot landing and body balance are those most affected in advanced stages of PD. The proposed models are resilient to noise and are computationally efficient for processing and classification of large longitudinal GRF signal datasets, therefore they can be useful for detecting deterioration in the postural balance and rating PD severity. |
doi_str_mv | 10.1109/JSEN.2020.3018262 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2471916024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9171856</ieee_id><sourcerecordid>2471916024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-87416be4c90fbdfc3d8635fad73f8f43e34d9aca17c0fc002b73a0f61795b9ec3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwJ-OBTZ26TNs3j2OZUhopV0KeSpjcjc2tn0gn797ZMfLnnPpxzOHyEXAIbATB1-5jPnkYxi9mIM8jiND4iA0iSLAIpsuP-5ywSXH6ckrMQVoyBkokckM-5di3Nt7p1TYubbeP1muZuWXcy7s4-uEBt4-mL9l-uDk19E-jUBdQB6RRbNF2wprquaI4_6F27p69dWb08JydWrwNe_OmQvN_N3ib30eJ5_jAZLyLDE9VGmRSQliiMYrasrOFVlvLE6kpym1nBkYtKaaNBGmYNY3EpuWY2BamSUqHhQ3J96N365nuHoS1Wzc5300MRCwkKUhaLzgUHl_FNCB5tsfVuo_2-AFb0BIueYNETLP4IdpmrQ8Yh4r9fgYQsSfkvNodtlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471916024</pqid></control><display><type>article</type><title>Gait Spatiotemporal Signal Analysis for Parkinson's Disease Detection and Severity Rating</title><source>IEEE Electronic Library (IEL)</source><creator>Alharthi, Abdullah S. ; Casson, Alexander J. ; Ozanyan, Krikor B.</creator><creatorcontrib>Alharthi, Abdullah S. ; Casson, Alexander J. ; Ozanyan, Krikor B.</creatorcontrib><description>Deep learning models are used to process and fuse raw data of gait-induced ground reaction force (GRF) for Parkinson's disease (PD) patients and healthy subjects with the aim to categorize PD severity. This is achieved by learning automatically, end-to-end, the spatiotemporal GRF signals, resulting in an effective PD severity classification with mean performance F1-score of 95.5% and F1-score standard errors of 0.28%. Layer-wise relevance propagation (LRP) is used to interpret the models' output and provide insight into which features in the spatiotemporal gait GRF signals are most significant for the models' predictions. This allows their assignment to gait events, implying that while for the classification of healthy gait the heel strike and body balance are the most indicative gait elements, foot landing and body balance are those most affected in advanced stages of PD. The proposed models are resilient to noise and are computationally efficient for processing and classification of large longitudinal GRF signal datasets, therefore they can be useful for detecting deterioration in the postural balance and rating PD severity.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3018262</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Classification ; Convolution ; Deep convolutional neural networks (DCNN) ; deep learning ; Diseases ; Foot ; Gait ; ground reaction forces (GRF) ; Heels ; interpretable neural networks ; Machine learning ; Neurons ; Parkinson's disease ; perturbation ; Predictive models ; Sensors ; Signal analysis ; Signal processing ; Spatiotemporal phenomena</subject><ispartof>IEEE sensors journal, 2021-01, Vol.21 (2), p.1838-1848</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-87416be4c90fbdfc3d8635fad73f8f43e34d9aca17c0fc002b73a0f61795b9ec3</citedby><cites>FETCH-LOGICAL-c359t-87416be4c90fbdfc3d8635fad73f8f43e34d9aca17c0fc002b73a0f61795b9ec3</cites><orcidid>0000-0001-5923-0298 ; 0000-0001-6776-7503 ; 0000-0003-1408-1190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9171856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9171856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alharthi, Abdullah S.</creatorcontrib><creatorcontrib>Casson, Alexander J.</creatorcontrib><creatorcontrib>Ozanyan, Krikor B.</creatorcontrib><title>Gait Spatiotemporal Signal Analysis for Parkinson's Disease Detection and Severity Rating</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Deep learning models are used to process and fuse raw data of gait-induced ground reaction force (GRF) for Parkinson's disease (PD) patients and healthy subjects with the aim to categorize PD severity. This is achieved by learning automatically, end-to-end, the spatiotemporal GRF signals, resulting in an effective PD severity classification with mean performance F1-score of 95.5% and F1-score standard errors of 0.28%. Layer-wise relevance propagation (LRP) is used to interpret the models' output and provide insight into which features in the spatiotemporal gait GRF signals are most significant for the models' predictions. This allows their assignment to gait events, implying that while for the classification of healthy gait the heel strike and body balance are the most indicative gait elements, foot landing and body balance are those most affected in advanced stages of PD. The proposed models are resilient to noise and are computationally efficient for processing and classification of large longitudinal GRF signal datasets, therefore they can be useful for detecting deterioration in the postural balance and rating PD severity.</description><subject>Classification</subject><subject>Convolution</subject><subject>Deep convolutional neural networks (DCNN)</subject><subject>deep learning</subject><subject>Diseases</subject><subject>Foot</subject><subject>Gait</subject><subject>ground reaction forces (GRF)</subject><subject>Heels</subject><subject>interpretable neural networks</subject><subject>Machine learning</subject><subject>Neurons</subject><subject>Parkinson's disease</subject><subject>perturbation</subject><subject>Predictive models</subject><subject>Sensors</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Spatiotemporal phenomena</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwJ-OBTZ26TNs3j2OZUhopV0KeSpjcjc2tn0gn797ZMfLnnPpxzOHyEXAIbATB1-5jPnkYxi9mIM8jiND4iA0iSLAIpsuP-5ywSXH6ckrMQVoyBkokckM-5di3Nt7p1TYubbeP1muZuWXcy7s4-uEBt4-mL9l-uDk19E-jUBdQB6RRbNF2wprquaI4_6F27p69dWb08JydWrwNe_OmQvN_N3ib30eJ5_jAZLyLDE9VGmRSQliiMYrasrOFVlvLE6kpym1nBkYtKaaNBGmYNY3EpuWY2BamSUqHhQ3J96N365nuHoS1Wzc5300MRCwkKUhaLzgUHl_FNCB5tsfVuo_2-AFb0BIueYNETLP4IdpmrQ8Yh4r9fgYQsSfkvNodtlw</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Alharthi, Abdullah S.</creator><creator>Casson, Alexander J.</creator><creator>Ozanyan, Krikor B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5923-0298</orcidid><orcidid>https://orcid.org/0000-0001-6776-7503</orcidid><orcidid>https://orcid.org/0000-0003-1408-1190</orcidid></search><sort><creationdate>20210115</creationdate><title>Gait Spatiotemporal Signal Analysis for Parkinson's Disease Detection and Severity Rating</title><author>Alharthi, Abdullah S. ; Casson, Alexander J. ; Ozanyan, Krikor B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-87416be4c90fbdfc3d8635fad73f8f43e34d9aca17c0fc002b73a0f61795b9ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Convolution</topic><topic>Deep convolutional neural networks (DCNN)</topic><topic>deep learning</topic><topic>Diseases</topic><topic>Foot</topic><topic>Gait</topic><topic>ground reaction forces (GRF)</topic><topic>Heels</topic><topic>interpretable neural networks</topic><topic>Machine learning</topic><topic>Neurons</topic><topic>Parkinson's disease</topic><topic>perturbation</topic><topic>Predictive models</topic><topic>Sensors</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Spatiotemporal phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alharthi, Abdullah S.</creatorcontrib><creatorcontrib>Casson, Alexander J.</creatorcontrib><creatorcontrib>Ozanyan, Krikor B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alharthi, Abdullah S.</au><au>Casson, Alexander J.</au><au>Ozanyan, Krikor B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gait Spatiotemporal Signal Analysis for Parkinson's Disease Detection and Severity Rating</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-01-15</date><risdate>2021</risdate><volume>21</volume><issue>2</issue><spage>1838</spage><epage>1848</epage><pages>1838-1848</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Deep learning models are used to process and fuse raw data of gait-induced ground reaction force (GRF) for Parkinson's disease (PD) patients and healthy subjects with the aim to categorize PD severity. This is achieved by learning automatically, end-to-end, the spatiotemporal GRF signals, resulting in an effective PD severity classification with mean performance F1-score of 95.5% and F1-score standard errors of 0.28%. Layer-wise relevance propagation (LRP) is used to interpret the models' output and provide insight into which features in the spatiotemporal gait GRF signals are most significant for the models' predictions. This allows their assignment to gait events, implying that while for the classification of healthy gait the heel strike and body balance are the most indicative gait elements, foot landing and body balance are those most affected in advanced stages of PD. The proposed models are resilient to noise and are computationally efficient for processing and classification of large longitudinal GRF signal datasets, therefore they can be useful for detecting deterioration in the postural balance and rating PD severity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3018262</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5923-0298</orcidid><orcidid>https://orcid.org/0000-0001-6776-7503</orcidid><orcidid>https://orcid.org/0000-0003-1408-1190</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-01, Vol.21 (2), p.1838-1848 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2471916024 |
source | IEEE Electronic Library (IEL) |
subjects | Classification Convolution Deep convolutional neural networks (DCNN) deep learning Diseases Foot Gait ground reaction forces (GRF) Heels interpretable neural networks Machine learning Neurons Parkinson's disease perturbation Predictive models Sensors Signal analysis Signal processing Spatiotemporal phenomena |
title | Gait Spatiotemporal Signal Analysis for Parkinson's Disease Detection and Severity Rating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gait%20Spatiotemporal%20Signal%20Analysis%20for%20Parkinson's%20Disease%20Detection%20and%20Severity%20Rating&rft.jtitle=IEEE%20sensors%20journal&rft.au=Alharthi,%20Abdullah%20S.&rft.date=2021-01-15&rft.volume=21&rft.issue=2&rft.spage=1838&rft.epage=1848&rft.pages=1838-1848&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3018262&rft_dat=%3Cproquest_RIE%3E2471916024%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471916024&rft_id=info:pmid/&rft_ieee_id=9171856&rfr_iscdi=true |