A Quick Algorithm to Determine 2-Optimality Consensus for Collectives
Nowadays, to solve a problem, people/systems typically use knowledge from different sources. A binary vector is a useful structure to represent knowledge states, and determining the consensus for a binary vector collective is helpful in many areas. However, determining a consensus that satisfies pos...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Dang, Dai Tho Nguyen, Ngoc Thanh Hwang, Dosam |
description | Nowadays, to solve a problem, people/systems typically use knowledge from different sources. A binary vector is a useful structure to represent knowledge states, and determining the consensus for a binary vector collective is helpful in many areas. However, determining a consensus that satisfies postulate 2-Optimality is an NP-hard problem; therefore, many heuristic algorithms have been proposed. The basic heuristic algorithm is the fastest in the literature, and most widely used to solve this problem. The computational complexity of the basic heuristic algorithm is O(m2n). In this study, we propose a quick algorithm (called QADC) to determine the 2-Optimality consensus. The QADC algorithm is developed based on a new approach for calculating the distances from a candidate consensus to the collective members. The computational complexity of the QADC algorithm has been reduced to O(mn), and the consensus quality of QADC algorithm and the basic heuristic algorithm is the same. |
doi_str_mv | 10.1109/ACCESS.2020.3043371 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471913021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9286382</ieee_id><doaj_id>oai_doaj_org_article_34d76cb5fcc0424398166afe17363738</doaj_id><sourcerecordid>2471913021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-c79b362bbbcdacbe6bf0cecdbaea82ccc2380797d9f492916c04c30355d6a0ff3</originalsourceid><addsrcrecordid>eNpNUE1r3DAQNSWFhjS_IBdDzt5IGluyjouz-YBAKGnPQh6PUm29q42kDeTfV6lD6Fxm5jHvzcyrqgvOVpwzfbUehs3T00owwVbAWgDFv1SngkvdQAfy5L_6W3We0paV6AvUqdNqs65_HD3-qdfzc4g-_97VOdTXlCnu_J5q0Twest_Z2ee3egj7RPt0TLULsXTzTJj9K6Xv1Vdn50TnH_ms-nWz-TncNQ-Pt_fD-qHBVvW5QaVHkGIcR5wsjiRHx5BwGi3ZXiCigJ4prSbtWi00l8haBAZdN0nLnIOz6n7RnYLdmkMsh8U3E6w3_4AQn42N2eNMBtpJSRw7h0VEtKDLx9I64gokKOiL1uWidYjh5Ugpm204xn0534hWcc2BCV6mYJnCGFKK5D63cmbe7TeL_ebdfvNhf2FdLCxPRJ8MLXoJvYC_S3KAOw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471913021</pqid></control><display><type>article</type><title>A Quick Algorithm to Determine 2-Optimality Consensus for Collectives</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dang, Dai Tho ; Nguyen, Ngoc Thanh ; Hwang, Dosam</creator><creatorcontrib>Dang, Dai Tho ; Nguyen, Ngoc Thanh ; Hwang, Dosam</creatorcontrib><description>Nowadays, to solve a problem, people/systems typically use knowledge from different sources. A binary vector is a useful structure to represent knowledge states, and determining the consensus for a binary vector collective is helpful in many areas. However, determining a consensus that satisfies postulate 2-Optimality is an NP-hard problem; therefore, many heuristic algorithms have been proposed. The basic heuristic algorithm is the fastest in the literature, and most widely used to solve this problem. The computational complexity of the basic heuristic algorithm is O(m2n). In this study, we propose a quick algorithm (called QADC) to determine the 2-Optimality consensus. The QADC algorithm is developed based on a new approach for calculating the distances from a candidate consensus to the collective members. The computational complexity of the QADC algorithm has been reduced to O(mn), and the consensus quality of QADC algorithm and the basic heuristic algorithm is the same.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3043371</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>2-Optimality consensus ; Algorithms ; Collective intelligence ; collective knowledge ; Complexity ; consensus ; Diseases ; Heuristic ; heuristic algorithm ; Heuristic algorithms ; Heuristic methods ; Partitioning algorithms ; Prediction algorithms ; Proteins ; Time complexity ; Uncertainty</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-c79b362bbbcdacbe6bf0cecdbaea82ccc2380797d9f492916c04c30355d6a0ff3</citedby><cites>FETCH-LOGICAL-c478t-c79b362bbbcdacbe6bf0cecdbaea82ccc2380797d9f492916c04c30355d6a0ff3</cites><orcidid>0000-0001-9327-1288 ; 0000-0002-3247-2948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9286382$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Dang, Dai Tho</creatorcontrib><creatorcontrib>Nguyen, Ngoc Thanh</creatorcontrib><creatorcontrib>Hwang, Dosam</creatorcontrib><title>A Quick Algorithm to Determine 2-Optimality Consensus for Collectives</title><title>IEEE access</title><addtitle>Access</addtitle><description>Nowadays, to solve a problem, people/systems typically use knowledge from different sources. A binary vector is a useful structure to represent knowledge states, and determining the consensus for a binary vector collective is helpful in many areas. However, determining a consensus that satisfies postulate 2-Optimality is an NP-hard problem; therefore, many heuristic algorithms have been proposed. The basic heuristic algorithm is the fastest in the literature, and most widely used to solve this problem. The computational complexity of the basic heuristic algorithm is O(m2n). In this study, we propose a quick algorithm (called QADC) to determine the 2-Optimality consensus. The QADC algorithm is developed based on a new approach for calculating the distances from a candidate consensus to the collective members. The computational complexity of the QADC algorithm has been reduced to O(mn), and the consensus quality of QADC algorithm and the basic heuristic algorithm is the same.</description><subject>2-Optimality consensus</subject><subject>Algorithms</subject><subject>Collective intelligence</subject><subject>collective knowledge</subject><subject>Complexity</subject><subject>consensus</subject><subject>Diseases</subject><subject>Heuristic</subject><subject>heuristic algorithm</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>Partitioning algorithms</subject><subject>Prediction algorithms</subject><subject>Proteins</subject><subject>Time complexity</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1r3DAQNSWFhjS_IBdDzt5IGluyjouz-YBAKGnPQh6PUm29q42kDeTfV6lD6Fxm5jHvzcyrqgvOVpwzfbUehs3T00owwVbAWgDFv1SngkvdQAfy5L_6W3We0paV6AvUqdNqs65_HD3-qdfzc4g-_97VOdTXlCnu_J5q0Twest_Z2ee3egj7RPt0TLULsXTzTJj9K6Xv1Vdn50TnH_ms-nWz-TncNQ-Pt_fD-qHBVvW5QaVHkGIcR5wsjiRHx5BwGi3ZXiCigJ4prSbtWi00l8haBAZdN0nLnIOz6n7RnYLdmkMsh8U3E6w3_4AQn42N2eNMBtpJSRw7h0VEtKDLx9I64gokKOiL1uWidYjh5Ugpm204xn0534hWcc2BCV6mYJnCGFKK5D63cmbe7TeL_ebdfvNhf2FdLCxPRJ8MLXoJvYC_S3KAOw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Dang, Dai Tho</creator><creator>Nguyen, Ngoc Thanh</creator><creator>Hwang, Dosam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9327-1288</orcidid><orcidid>https://orcid.org/0000-0002-3247-2948</orcidid></search><sort><creationdate>20200101</creationdate><title>A Quick Algorithm to Determine 2-Optimality Consensus for Collectives</title><author>Dang, Dai Tho ; Nguyen, Ngoc Thanh ; Hwang, Dosam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-c79b362bbbcdacbe6bf0cecdbaea82ccc2380797d9f492916c04c30355d6a0ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2-Optimality consensus</topic><topic>Algorithms</topic><topic>Collective intelligence</topic><topic>collective knowledge</topic><topic>Complexity</topic><topic>consensus</topic><topic>Diseases</topic><topic>Heuristic</topic><topic>heuristic algorithm</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>Partitioning algorithms</topic><topic>Prediction algorithms</topic><topic>Proteins</topic><topic>Time complexity</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Dai Tho</creatorcontrib><creatorcontrib>Nguyen, Ngoc Thanh</creatorcontrib><creatorcontrib>Hwang, Dosam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Dai Tho</au><au>Nguyen, Ngoc Thanh</au><au>Hwang, Dosam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Quick Algorithm to Determine 2-Optimality Consensus for Collectives</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Nowadays, to solve a problem, people/systems typically use knowledge from different sources. A binary vector is a useful structure to represent knowledge states, and determining the consensus for a binary vector collective is helpful in many areas. However, determining a consensus that satisfies postulate 2-Optimality is an NP-hard problem; therefore, many heuristic algorithms have been proposed. The basic heuristic algorithm is the fastest in the literature, and most widely used to solve this problem. The computational complexity of the basic heuristic algorithm is O(m2n). In this study, we propose a quick algorithm (called QADC) to determine the 2-Optimality consensus. The QADC algorithm is developed based on a new approach for calculating the distances from a candidate consensus to the collective members. The computational complexity of the QADC algorithm has been reduced to O(mn), and the consensus quality of QADC algorithm and the basic heuristic algorithm is the same.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3043371</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9327-1288</orcidid><orcidid>https://orcid.org/0000-0002-3247-2948</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2471913021 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 2-Optimality consensus Algorithms Collective intelligence collective knowledge Complexity consensus Diseases Heuristic heuristic algorithm Heuristic algorithms Heuristic methods Partitioning algorithms Prediction algorithms Proteins Time complexity Uncertainty |
title | A Quick Algorithm to Determine 2-Optimality Consensus for Collectives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Quick%20Algorithm%20to%20Determine%202-Optimality%20Consensus%20for%20Collectives&rft.jtitle=IEEE%20access&rft.au=Dang,%20Dai%20Tho&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3043371&rft_dat=%3Cproquest_cross%3E2471913021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471913021&rft_id=info:pmid/&rft_ieee_id=9286382&rft_doaj_id=oai_doaj_org_article_34d76cb5fcc0424398166afe17363738&rfr_iscdi=true |