Expected residual minimization method for monotone stochastic tensor complementarity problem
In this paper, we first introduce a new class of structured tensors, named strictly positive semidefinite tensors, and show that a strictly positive semidefinite tensor is not an R 0 tensor. We focus on the stochastic tensor complementarity problem (STCP), where the expectation of the involved tenso...
Gespeichert in:
Veröffentlicht in: | Computational optimization and applications 2020-12, Vol.77 (3), p.871-896 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 896 |
---|---|
container_issue | 3 |
container_start_page | 871 |
container_title | Computational optimization and applications |
container_volume | 77 |
creator | Ming, Zhenyu Zhang, Liping Qi, Liqun |
description | In this paper, we first introduce a new class of structured tensors, named strictly positive semidefinite tensors, and show that a strictly positive semidefinite tensor is not an
R
0
tensor. We focus on the stochastic tensor complementarity problem (STCP), where the expectation of the involved tensor is a strictly positive semidefinite tensor. We denote such an STCP as a monotone STCP. Based on three popular NCP functions, the
min
function, the
Fischer–Burmeister (FB)
function and the
penalized FB
function, as well as the special structure of the monotone STCP, we introduce three new NCP functions and establish the expected residual minimization (ERM) formulation of the monotone STCP. We show that the solution set of the ERM problem is nonempty and bounded if the solution set of the expected value (EV) formulation for such an STCP is nonempty and bounded. Moreover, an approximate regularized model is proposed to weaken the conditions for nonemptiness and boundedness of the solution set of the ERM problem in practice. Numerical results indicate that the performance of the ERM method is better than that of the EV method. |
doi_str_mv | 10.1007/s10589-020-00222-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471781988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471781988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-75ce7c03af65a75e97a38a76ae3b3968e7f19d62775dd8610fbe257266040a303</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgevQk6SSTpZR6AcGN7oSQZs7YKZ1kTFJofXqjFdy5Ovyc_wIfIZcMrhmAukkM6kZXwKEC4JxXuyMyYbUSFW_07JhMQHNZSQBxSs5SWgOAVoJPyNtiN6LL2NKIqW-3dkOH3vdD_2lzHzwdMK9CS7sQ6RB8yMEjTTm4lU25dzSjT-XlwjBucECfbezzno4xLIs-Jyed3SS8-L1T8nq3eJk_VE_P94_z26fKCaZzpWqHyoGwnaytqlErKxqrpEWxFFo2qDqmW8mVqtu2kQy6JfJacSlhBlaAmJKrQ2_Z_dhiymYdttGXScNniqmG6aYpLn5wuRhSitiZMfaDjXvDwHxTNAeKplA0PxTNroTEIZSK2b9j_Kv-J_UFkV93VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471781988</pqid></control><display><type>article</type><title>Expected residual minimization method for monotone stochastic tensor complementarity problem</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Ming, Zhenyu ; Zhang, Liping ; Qi, Liqun</creator><creatorcontrib>Ming, Zhenyu ; Zhang, Liping ; Qi, Liqun</creatorcontrib><description>In this paper, we first introduce a new class of structured tensors, named strictly positive semidefinite tensors, and show that a strictly positive semidefinite tensor is not an
R
0
tensor. We focus on the stochastic tensor complementarity problem (STCP), where the expectation of the involved tensor is a strictly positive semidefinite tensor. We denote such an STCP as a monotone STCP. Based on three popular NCP functions, the
min
function, the
Fischer–Burmeister (FB)
function and the
penalized FB
function, as well as the special structure of the monotone STCP, we introduce three new NCP functions and establish the expected residual minimization (ERM) formulation of the monotone STCP. We show that the solution set of the ERM problem is nonempty and bounded if the solution set of the expected value (EV) formulation for such an STCP is nonempty and bounded. Moreover, an approximate regularized model is proposed to weaken the conditions for nonemptiness and boundedness of the solution set of the ERM problem in practice. Numerical results indicate that the performance of the ERM method is better than that of the EV method.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-020-00222-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Convex and Discrete Geometry ; Management Science ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Statistics ; Tensors</subject><ispartof>Computational optimization and applications, 2020-12, Vol.77 (3), p.871-896</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-75ce7c03af65a75e97a38a76ae3b3968e7f19d62775dd8610fbe257266040a303</citedby><cites>FETCH-LOGICAL-c319t-75ce7c03af65a75e97a38a76ae3b3968e7f19d62775dd8610fbe257266040a303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-020-00222-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-020-00222-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ming, Zhenyu</creatorcontrib><creatorcontrib>Zhang, Liping</creatorcontrib><creatorcontrib>Qi, Liqun</creatorcontrib><title>Expected residual minimization method for monotone stochastic tensor complementarity problem</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>In this paper, we first introduce a new class of structured tensors, named strictly positive semidefinite tensors, and show that a strictly positive semidefinite tensor is not an
R
0
tensor. We focus on the stochastic tensor complementarity problem (STCP), where the expectation of the involved tensor is a strictly positive semidefinite tensor. We denote such an STCP as a monotone STCP. Based on three popular NCP functions, the
min
function, the
Fischer–Burmeister (FB)
function and the
penalized FB
function, as well as the special structure of the monotone STCP, we introduce three new NCP functions and establish the expected residual minimization (ERM) formulation of the monotone STCP. We show that the solution set of the ERM problem is nonempty and bounded if the solution set of the expected value (EV) formulation for such an STCP is nonempty and bounded. Moreover, an approximate regularized model is proposed to weaken the conditions for nonemptiness and boundedness of the solution set of the ERM problem in practice. Numerical results indicate that the performance of the ERM method is better than that of the EV method.</description><subject>Convex and Discrete Geometry</subject><subject>Management Science</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Statistics</subject><subject>Tensors</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgevQk6SSTpZR6AcGN7oSQZs7YKZ1kTFJofXqjFdy5Ovyc_wIfIZcMrhmAukkM6kZXwKEC4JxXuyMyYbUSFW_07JhMQHNZSQBxSs5SWgOAVoJPyNtiN6LL2NKIqW-3dkOH3vdD_2lzHzwdMK9CS7sQ6RB8yMEjTTm4lU25dzSjT-XlwjBucECfbezzno4xLIs-Jyed3SS8-L1T8nq3eJk_VE_P94_z26fKCaZzpWqHyoGwnaytqlErKxqrpEWxFFo2qDqmW8mVqtu2kQy6JfJacSlhBlaAmJKrQ2_Z_dhiymYdttGXScNniqmG6aYpLn5wuRhSitiZMfaDjXvDwHxTNAeKplA0PxTNroTEIZSK2b9j_Kv-J_UFkV93VA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Ming, Zhenyu</creator><creator>Zhang, Liping</creator><creator>Qi, Liqun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20201201</creationdate><title>Expected residual minimization method for monotone stochastic tensor complementarity problem</title><author>Ming, Zhenyu ; Zhang, Liping ; Qi, Liqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-75ce7c03af65a75e97a38a76ae3b3968e7f19d62775dd8610fbe257266040a303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convex and Discrete Geometry</topic><topic>Management Science</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Statistics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ming, Zhenyu</creatorcontrib><creatorcontrib>Zhang, Liping</creatorcontrib><creatorcontrib>Qi, Liqun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ming, Zhenyu</au><au>Zhang, Liping</au><au>Qi, Liqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expected residual minimization method for monotone stochastic tensor complementarity problem</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>77</volume><issue>3</issue><spage>871</spage><epage>896</epage><pages>871-896</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>In this paper, we first introduce a new class of structured tensors, named strictly positive semidefinite tensors, and show that a strictly positive semidefinite tensor is not an
R
0
tensor. We focus on the stochastic tensor complementarity problem (STCP), where the expectation of the involved tensor is a strictly positive semidefinite tensor. We denote such an STCP as a monotone STCP. Based on three popular NCP functions, the
min
function, the
Fischer–Burmeister (FB)
function and the
penalized FB
function, as well as the special structure of the monotone STCP, we introduce three new NCP functions and establish the expected residual minimization (ERM) formulation of the monotone STCP. We show that the solution set of the ERM problem is nonempty and bounded if the solution set of the expected value (EV) formulation for such an STCP is nonempty and bounded. Moreover, an approximate regularized model is proposed to weaken the conditions for nonemptiness and boundedness of the solution set of the ERM problem in practice. Numerical results indicate that the performance of the ERM method is better than that of the EV method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-020-00222-x</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-6003 |
ispartof | Computational optimization and applications, 2020-12, Vol.77 (3), p.871-896 |
issn | 0926-6003 1573-2894 |
language | eng |
recordid | cdi_proquest_journals_2471781988 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Convex and Discrete Geometry Management Science Mathematical analysis Mathematics Mathematics and Statistics Operations Research Operations Research/Decision Theory Optimization Statistics Tensors |
title | Expected residual minimization method for monotone stochastic tensor complementarity problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expected%20residual%20minimization%20method%20for%20monotone%20stochastic%20tensor%20complementarity%20problem&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Ming,%20Zhenyu&rft.date=2020-12-01&rft.volume=77&rft.issue=3&rft.spage=871&rft.epage=896&rft.pages=871-896&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-020-00222-x&rft_dat=%3Cproquest_cross%3E2471781988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471781988&rft_id=info:pmid/&rfr_iscdi=true |