Spin–orbit coupling effect on energy level splitting and band structure inversion in CsPbBr3

The band structures and density of states (DOS) of all the three structural configurations of CsPbBr 3 without spin–orbit coupling (SOC = 0) and with the addition of spin–orbit coupling (SOC ≠ 0) effects were calculated, using density functional theory. Upon the inclusion of the spin–orbit coupling,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021, Vol.56 (1), p.528-542
Hauptverfasser: Hussain, Mujtaba, Rashid, Muhammad, Saeed, Faisal, Bhatti, A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 1
container_start_page 528
container_title Journal of materials science
container_volume 56
creator Hussain, Mujtaba
Rashid, Muhammad
Saeed, Faisal
Bhatti, A. S.
description The band structures and density of states (DOS) of all the three structural configurations of CsPbBr 3 without spin–orbit coupling (SOC = 0) and with the addition of spin–orbit coupling (SOC ≠ 0) effects were calculated, using density functional theory. Upon the inclusion of the spin–orbit coupling, the bandgaps exhibit reductions of 1.27 eV, 1.16 eV and 1.08 eV for the cubic, tetragonal and orthorhombic phases, respectively. These calculations provide a positive split-off energy value of Δ so  = 1.69 eV for the simple cubic phase. For the lower symmetry phases, the p -like fourfold degenerate Γ 8 v ( 4 ) band has been observed to split to form two bands, in addition to the Γ 6 v ( 2 ) split-off band. The calculated splitting energies between these bands are found to be in close agreement with previous experimentally measured values. The calculated electronic band structures show that CsPbBr 3 has a negative ‘inversion energy’ (Δ i  
doi_str_mv 10.1007/s10853-020-05298-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2471743185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471743185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cbd4727eb8012218f11932867dc8aa06fcaeda1cb032ed9148e0e6663d5c76463</originalsourceid><addsrcrecordid>eNp9kM9KxDAQh4MouK6-gKeA5-okaZP0qIv_YEFBvRradLp0qWlN0oW9-Q6-oU9i1wrevMwc5vf9Bj5CThmcMwB1ERjoTCTAIYGM5zrRe2TGMiWSVIPYJzMAzhOeSnZIjkJYA0CmOJuR16e-cV8fn50vm0htN_Rt41YU6xptpJ2j6NCvtrTFDbY0jNcYd4HCVbTcjRD9YOPgkTZugz40I9M4ugiP5ZUXx-SgLtqAJ797Tl5urp8Xd8ny4fZ-cblMrGB5TGxZpYorLDUwzpmuGcsF11JVVhcFyNoWWBXMliA4VjlLNQJKKUWVWSVTKebkbOrtffc-YIhm3Q3ejS8NTxVTqWCjnznhU8r6LgSPtel981b4rWFgdh7N5NGMHs2PR6NHSExQGMNuhf6v-h_qG9iHdwk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471743185</pqid></control><display><type>article</type><title>Spin–orbit coupling effect on energy level splitting and band structure inversion in CsPbBr3</title><source>SpringerNature Journals</source><creator>Hussain, Mujtaba ; Rashid, Muhammad ; Saeed, Faisal ; Bhatti, A. S.</creator><creatorcontrib>Hussain, Mujtaba ; Rashid, Muhammad ; Saeed, Faisal ; Bhatti, A. S.</creatorcontrib><description>The band structures and density of states (DOS) of all the three structural configurations of CsPbBr 3 without spin–orbit coupling (SOC = 0) and with the addition of spin–orbit coupling (SOC ≠ 0) effects were calculated, using density functional theory. Upon the inclusion of the spin–orbit coupling, the bandgaps exhibit reductions of 1.27 eV, 1.16 eV and 1.08 eV for the cubic, tetragonal and orthorhombic phases, respectively. These calculations provide a positive split-off energy value of Δ so  = 1.69 eV for the simple cubic phase. For the lower symmetry phases, the p -like fourfold degenerate Γ 8 v ( 4 ) band has been observed to split to form two bands, in addition to the Γ 6 v ( 2 ) split-off band. The calculated splitting energies between these bands are found to be in close agreement with previous experimentally measured values. The calculated electronic band structures show that CsPbBr 3 has a negative ‘inversion energy’ (Δ i  &lt; 0). The magnitude of the inversion energy for the cubic phase is 2.36 eV for SOC = 0, which increased by 0.4–2.76 eV with the addition of the spin–orbit coupling. The arrangement of Bloch levels in the band structure of CsPbBr 3 has been found to resemble that of a typical topological semimetal, but with a nonzero bandgap opening, due to the presence of the inversion asymmetry within its molecular structure.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-05298-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymmetry ; Band structure of solids ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Computation &amp; Theory ; Coupling (molecular) ; Crystallography and Scattering Methods ; Density functional theory ; Density of states ; Energy gap ; Energy levels ; Energy value ; Materials Science ; Mathematical analysis ; Molecular structure ; Polymer Sciences ; Solid Mechanics ; Spin-orbit interactions ; Splitting</subject><ispartof>Journal of materials science, 2021, Vol.56 (1), p.528-542</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cbd4727eb8012218f11932867dc8aa06fcaeda1cb032ed9148e0e6663d5c76463</citedby><cites>FETCH-LOGICAL-c319t-cbd4727eb8012218f11932867dc8aa06fcaeda1cb032ed9148e0e6663d5c76463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-05298-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-05298-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hussain, Mujtaba</creatorcontrib><creatorcontrib>Rashid, Muhammad</creatorcontrib><creatorcontrib>Saeed, Faisal</creatorcontrib><creatorcontrib>Bhatti, A. S.</creatorcontrib><title>Spin–orbit coupling effect on energy level splitting and band structure inversion in CsPbBr3</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The band structures and density of states (DOS) of all the three structural configurations of CsPbBr 3 without spin–orbit coupling (SOC = 0) and with the addition of spin–orbit coupling (SOC ≠ 0) effects were calculated, using density functional theory. Upon the inclusion of the spin–orbit coupling, the bandgaps exhibit reductions of 1.27 eV, 1.16 eV and 1.08 eV for the cubic, tetragonal and orthorhombic phases, respectively. These calculations provide a positive split-off energy value of Δ so  = 1.69 eV for the simple cubic phase. For the lower symmetry phases, the p -like fourfold degenerate Γ 8 v ( 4 ) band has been observed to split to form two bands, in addition to the Γ 6 v ( 2 ) split-off band. The calculated splitting energies between these bands are found to be in close agreement with previous experimentally measured values. The calculated electronic band structures show that CsPbBr 3 has a negative ‘inversion energy’ (Δ i  &lt; 0). The magnitude of the inversion energy for the cubic phase is 2.36 eV for SOC = 0, which increased by 0.4–2.76 eV with the addition of the spin–orbit coupling. The arrangement of Bloch levels in the band structure of CsPbBr 3 has been found to resemble that of a typical topological semimetal, but with a nonzero bandgap opening, due to the presence of the inversion asymmetry within its molecular structure.</description><subject>Asymmetry</subject><subject>Band structure of solids</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Computation &amp; Theory</subject><subject>Coupling (molecular)</subject><subject>Crystallography and Scattering Methods</subject><subject>Density functional theory</subject><subject>Density of states</subject><subject>Energy gap</subject><subject>Energy levels</subject><subject>Energy value</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Molecular structure</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Spin-orbit interactions</subject><subject>Splitting</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM9KxDAQh4MouK6-gKeA5-okaZP0qIv_YEFBvRradLp0qWlN0oW9-Q6-oU9i1wrevMwc5vf9Bj5CThmcMwB1ERjoTCTAIYGM5zrRe2TGMiWSVIPYJzMAzhOeSnZIjkJYA0CmOJuR16e-cV8fn50vm0htN_Rt41YU6xptpJ2j6NCvtrTFDbY0jNcYd4HCVbTcjRD9YOPgkTZugz40I9M4ugiP5ZUXx-SgLtqAJ797Tl5urp8Xd8ny4fZ-cblMrGB5TGxZpYorLDUwzpmuGcsF11JVVhcFyNoWWBXMliA4VjlLNQJKKUWVWSVTKebkbOrtffc-YIhm3Q3ejS8NTxVTqWCjnznhU8r6LgSPtel981b4rWFgdh7N5NGMHs2PR6NHSExQGMNuhf6v-h_qG9iHdwk</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hussain, Mujtaba</creator><creator>Rashid, Muhammad</creator><creator>Saeed, Faisal</creator><creator>Bhatti, A. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2021</creationdate><title>Spin–orbit coupling effect on energy level splitting and band structure inversion in CsPbBr3</title><author>Hussain, Mujtaba ; Rashid, Muhammad ; Saeed, Faisal ; Bhatti, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cbd4727eb8012218f11932867dc8aa06fcaeda1cb032ed9148e0e6663d5c76463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymmetry</topic><topic>Band structure of solids</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Computation &amp; Theory</topic><topic>Coupling (molecular)</topic><topic>Crystallography and Scattering Methods</topic><topic>Density functional theory</topic><topic>Density of states</topic><topic>Energy gap</topic><topic>Energy levels</topic><topic>Energy value</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Molecular structure</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Spin-orbit interactions</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Mujtaba</creatorcontrib><creatorcontrib>Rashid, Muhammad</creatorcontrib><creatorcontrib>Saeed, Faisal</creatorcontrib><creatorcontrib>Bhatti, A. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Mujtaba</au><au>Rashid, Muhammad</au><au>Saeed, Faisal</au><au>Bhatti, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin–orbit coupling effect on energy level splitting and band structure inversion in CsPbBr3</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021</date><risdate>2021</risdate><volume>56</volume><issue>1</issue><spage>528</spage><epage>542</epage><pages>528-542</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The band structures and density of states (DOS) of all the three structural configurations of CsPbBr 3 without spin–orbit coupling (SOC = 0) and with the addition of spin–orbit coupling (SOC ≠ 0) effects were calculated, using density functional theory. Upon the inclusion of the spin–orbit coupling, the bandgaps exhibit reductions of 1.27 eV, 1.16 eV and 1.08 eV for the cubic, tetragonal and orthorhombic phases, respectively. These calculations provide a positive split-off energy value of Δ so  = 1.69 eV for the simple cubic phase. For the lower symmetry phases, the p -like fourfold degenerate Γ 8 v ( 4 ) band has been observed to split to form two bands, in addition to the Γ 6 v ( 2 ) split-off band. The calculated splitting energies between these bands are found to be in close agreement with previous experimentally measured values. The calculated electronic band structures show that CsPbBr 3 has a negative ‘inversion energy’ (Δ i  &lt; 0). The magnitude of the inversion energy for the cubic phase is 2.36 eV for SOC = 0, which increased by 0.4–2.76 eV with the addition of the spin–orbit coupling. The arrangement of Bloch levels in the band structure of CsPbBr 3 has been found to resemble that of a typical topological semimetal, but with a nonzero bandgap opening, due to the presence of the inversion asymmetry within its molecular structure.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-05298-8</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2021, Vol.56 (1), p.528-542
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2471743185
source SpringerNature Journals
subjects Asymmetry
Band structure of solids
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Computation & Theory
Coupling (molecular)
Crystallography and Scattering Methods
Density functional theory
Density of states
Energy gap
Energy levels
Energy value
Materials Science
Mathematical analysis
Molecular structure
Polymer Sciences
Solid Mechanics
Spin-orbit interactions
Splitting
title Spin–orbit coupling effect on energy level splitting and band structure inversion in CsPbBr3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%E2%80%93orbit%20coupling%20effect%20on%20energy%20level%20splitting%20and%20band%20structure%20inversion%20in%20CsPbBr3&rft.jtitle=Journal%20of%20materials%20science&rft.au=Hussain,%20Mujtaba&rft.date=2021&rft.volume=56&rft.issue=1&rft.spage=528&rft.epage=542&rft.pages=528-542&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-05298-8&rft_dat=%3Cproquest_cross%3E2471743185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471743185&rft_id=info:pmid/&rfr_iscdi=true