Materials for lithium recovery from salt lake brine

Rapid developments in the electric industry have promoted an increasing demand for lithium resources. Lithium in salt lake brines has emerged as the main source for industrial lithium extraction, owing to its low cost and extensive reserves. The effective separation of Mg 2+ and Li + is critical to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021-01, Vol.56 (1), p.16-63
Hauptverfasser: Xu, Ping, Hong, Jun, Qian, Xiaoming, Xu, Zhiwei, Xia, Hong, Tao, Xuchen, Xu, Zhenzhen, Ni, Qing-Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 1
container_start_page 16
container_title Journal of materials science
container_volume 56
creator Xu, Ping
Hong, Jun
Qian, Xiaoming
Xu, Zhiwei
Xia, Hong
Tao, Xuchen
Xu, Zhenzhen
Ni, Qing-Qing
description Rapid developments in the electric industry have promoted an increasing demand for lithium resources. Lithium in salt lake brines has emerged as the main source for industrial lithium extraction, owing to its low cost and extensive reserves. The effective separation of Mg 2+ and Li + is critical to achieving high recovery efficiency and purity of the final lithium product. This paper summarizes Mg 2+ /Li + separation materials and methods in the field of lithium recovery from salt lake brines. The review begins with an introduction to the global distribution and demand for lithium resources, followed by a description of the materials used in various separation techniques, including precipitation, adsorption, solvent extraction, nanofiltration membrane, electrodialysis, and electrochemical methods. A comparison, analysis, and outlook of such methods are comprehensively discussed in terms of principles, mechanisms, synthesis/operation, development, and industrial applications. We conclude with a presentation of challenges and insights into the future directions of lithium extraction from salt lake brines. A combination of the advantages of various materials is the most logical step toward developing novel methods for extracting lithium from brines with high separation selectivity, stability, low cost, and environmentally friendly characteristics.
doi_str_mv 10.1007/s10853-020-05019-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2471740952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639118457</galeid><sourcerecordid>A639118457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-be3fe3b0acd11d88933e686af9b83c3555b1b5013eb52309e1f93e91d8c927303</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AU8FTx6qM5lm2xyXxS9YEfw4h7Q7Wavddk26ov_eaAXZi-QwEN5LhifEMcIZAuTnAaFQlIKEFBSgTnFHjFDllGYF0K4YAUiZymyC--IghBcAULnEkaBb27OvbRMS1_mkqfvnerNKPFfdO_vPxPlulQTb9EljXzkpfd3yodhzUeCj3zkWT5cXj7PrdH53dTObztMq06pPSybHVIKtFoiLotBEPCkm1umyoIqUUiWWcVniUkkCzeg0sY5opWVOQGNxMry79t3bhkNvXrqNb-OXRmY55hnoKI7F2UAtbcOmbl3Xe1vFs-BVXXUtuzreTyekEYssJhmL0y0hMj1_9Eu7CcHcPNxvs3JgK9-F4NmZta9X1n8aBPNd3gzlTSxvfsobjBINUohwu2T_t_c_1herYYNS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471740952</pqid></control><display><type>article</type><title>Materials for lithium recovery from salt lake brine</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xu, Ping ; Hong, Jun ; Qian, Xiaoming ; Xu, Zhiwei ; Xia, Hong ; Tao, Xuchen ; Xu, Zhenzhen ; Ni, Qing-Qing</creator><creatorcontrib>Xu, Ping ; Hong, Jun ; Qian, Xiaoming ; Xu, Zhiwei ; Xia, Hong ; Tao, Xuchen ; Xu, Zhenzhen ; Ni, Qing-Qing</creatorcontrib><description>Rapid developments in the electric industry have promoted an increasing demand for lithium resources. Lithium in salt lake brines has emerged as the main source for industrial lithium extraction, owing to its low cost and extensive reserves. The effective separation of Mg 2+ and Li + is critical to achieving high recovery efficiency and purity of the final lithium product. This paper summarizes Mg 2+ /Li + separation materials and methods in the field of lithium recovery from salt lake brines. The review begins with an introduction to the global distribution and demand for lithium resources, followed by a description of the materials used in various separation techniques, including precipitation, adsorption, solvent extraction, nanofiltration membrane, electrodialysis, and electrochemical methods. A comparison, analysis, and outlook of such methods are comprehensively discussed in terms of principles, mechanisms, synthesis/operation, development, and industrial applications. We conclude with a presentation of challenges and insights into the future directions of lithium extraction from salt lake brines. A combination of the advantages of various materials is the most logical step toward developing novel methods for extracting lithium from brines with high separation selectivity, stability, low cost, and environmentally friendly characteristics.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-05019-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Brines ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Electric industries ; Electrodialysis ; Industrial applications ; Lakes ; Lithium ; Low cost ; Materials recovery ; Materials Science ; Nanofiltration ; Polymer Sciences ; Review ; Salt lakes ; Selectivity ; Separation ; Solid Mechanics ; Solvent extraction</subject><ispartof>Journal of materials science, 2021-01, Vol.56 (1), p.16-63</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-be3fe3b0acd11d88933e686af9b83c3555b1b5013eb52309e1f93e91d8c927303</citedby><cites>FETCH-LOGICAL-c495t-be3fe3b0acd11d88933e686af9b83c3555b1b5013eb52309e1f93e91d8c927303</cites><orcidid>0000-0001-9362-2148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-05019-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-05019-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Hong, Jun</creatorcontrib><creatorcontrib>Qian, Xiaoming</creatorcontrib><creatorcontrib>Xu, Zhiwei</creatorcontrib><creatorcontrib>Xia, Hong</creatorcontrib><creatorcontrib>Tao, Xuchen</creatorcontrib><creatorcontrib>Xu, Zhenzhen</creatorcontrib><creatorcontrib>Ni, Qing-Qing</creatorcontrib><title>Materials for lithium recovery from salt lake brine</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Rapid developments in the electric industry have promoted an increasing demand for lithium resources. Lithium in salt lake brines has emerged as the main source for industrial lithium extraction, owing to its low cost and extensive reserves. The effective separation of Mg 2+ and Li + is critical to achieving high recovery efficiency and purity of the final lithium product. This paper summarizes Mg 2+ /Li + separation materials and methods in the field of lithium recovery from salt lake brines. The review begins with an introduction to the global distribution and demand for lithium resources, followed by a description of the materials used in various separation techniques, including precipitation, adsorption, solvent extraction, nanofiltration membrane, electrodialysis, and electrochemical methods. A comparison, analysis, and outlook of such methods are comprehensively discussed in terms of principles, mechanisms, synthesis/operation, development, and industrial applications. We conclude with a presentation of challenges and insights into the future directions of lithium extraction from salt lake brines. A combination of the advantages of various materials is the most logical step toward developing novel methods for extracting lithium from brines with high separation selectivity, stability, low cost, and environmentally friendly characteristics.</description><subject>Brines</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Electric industries</subject><subject>Electrodialysis</subject><subject>Industrial applications</subject><subject>Lakes</subject><subject>Lithium</subject><subject>Low cost</subject><subject>Materials recovery</subject><subject>Materials Science</subject><subject>Nanofiltration</subject><subject>Polymer Sciences</subject><subject>Review</subject><subject>Salt lakes</subject><subject>Selectivity</subject><subject>Separation</subject><subject>Solid Mechanics</subject><subject>Solvent extraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQQIMouK7-AU8FTx6qM5lm2xyXxS9YEfw4h7Q7Wavddk26ov_eaAXZi-QwEN5LhifEMcIZAuTnAaFQlIKEFBSgTnFHjFDllGYF0K4YAUiZymyC--IghBcAULnEkaBb27OvbRMS1_mkqfvnerNKPFfdO_vPxPlulQTb9EljXzkpfd3yodhzUeCj3zkWT5cXj7PrdH53dTObztMq06pPSybHVIKtFoiLotBEPCkm1umyoIqUUiWWcVniUkkCzeg0sY5opWVOQGNxMry79t3bhkNvXrqNb-OXRmY55hnoKI7F2UAtbcOmbl3Xe1vFs-BVXXUtuzreTyekEYssJhmL0y0hMj1_9Eu7CcHcPNxvs3JgK9-F4NmZta9X1n8aBPNd3gzlTSxvfsobjBINUohwu2T_t_c_1herYYNS</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Xu, Ping</creator><creator>Hong, Jun</creator><creator>Qian, Xiaoming</creator><creator>Xu, Zhiwei</creator><creator>Xia, Hong</creator><creator>Tao, Xuchen</creator><creator>Xu, Zhenzhen</creator><creator>Ni, Qing-Qing</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9362-2148</orcidid></search><sort><creationdate>20210101</creationdate><title>Materials for lithium recovery from salt lake brine</title><author>Xu, Ping ; Hong, Jun ; Qian, Xiaoming ; Xu, Zhiwei ; Xia, Hong ; Tao, Xuchen ; Xu, Zhenzhen ; Ni, Qing-Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-be3fe3b0acd11d88933e686af9b83c3555b1b5013eb52309e1f93e91d8c927303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brines</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Electric industries</topic><topic>Electrodialysis</topic><topic>Industrial applications</topic><topic>Lakes</topic><topic>Lithium</topic><topic>Low cost</topic><topic>Materials recovery</topic><topic>Materials Science</topic><topic>Nanofiltration</topic><topic>Polymer Sciences</topic><topic>Review</topic><topic>Salt lakes</topic><topic>Selectivity</topic><topic>Separation</topic><topic>Solid Mechanics</topic><topic>Solvent extraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Hong, Jun</creatorcontrib><creatorcontrib>Qian, Xiaoming</creatorcontrib><creatorcontrib>Xu, Zhiwei</creatorcontrib><creatorcontrib>Xia, Hong</creatorcontrib><creatorcontrib>Tao, Xuchen</creatorcontrib><creatorcontrib>Xu, Zhenzhen</creatorcontrib><creatorcontrib>Ni, Qing-Qing</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ping</au><au>Hong, Jun</au><au>Qian, Xiaoming</au><au>Xu, Zhiwei</au><au>Xia, Hong</au><au>Tao, Xuchen</au><au>Xu, Zhenzhen</au><au>Ni, Qing-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Materials for lithium recovery from salt lake brine</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>56</volume><issue>1</issue><spage>16</spage><epage>63</epage><pages>16-63</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Rapid developments in the electric industry have promoted an increasing demand for lithium resources. Lithium in salt lake brines has emerged as the main source for industrial lithium extraction, owing to its low cost and extensive reserves. The effective separation of Mg 2+ and Li + is critical to achieving high recovery efficiency and purity of the final lithium product. This paper summarizes Mg 2+ /Li + separation materials and methods in the field of lithium recovery from salt lake brines. The review begins with an introduction to the global distribution and demand for lithium resources, followed by a description of the materials used in various separation techniques, including precipitation, adsorption, solvent extraction, nanofiltration membrane, electrodialysis, and electrochemical methods. A comparison, analysis, and outlook of such methods are comprehensively discussed in terms of principles, mechanisms, synthesis/operation, development, and industrial applications. We conclude with a presentation of challenges and insights into the future directions of lithium extraction from salt lake brines. A combination of the advantages of various materials is the most logical step toward developing novel methods for extracting lithium from brines with high separation selectivity, stability, low cost, and environmentally friendly characteristics.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-05019-1</doi><tpages>48</tpages><orcidid>https://orcid.org/0000-0001-9362-2148</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2021-01, Vol.56 (1), p.16-63
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2471740952
source SpringerLink Journals - AutoHoldings
subjects Brines
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Electric industries
Electrodialysis
Industrial applications
Lakes
Lithium
Low cost
Materials recovery
Materials Science
Nanofiltration
Polymer Sciences
Review
Salt lakes
Selectivity
Separation
Solid Mechanics
Solvent extraction
title Materials for lithium recovery from salt lake brine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Materials%20for%20lithium%20recovery%20from%20salt%20lake%20brine&rft.jtitle=Journal%20of%20materials%20science&rft.au=Xu,%20Ping&rft.date=2021-01-01&rft.volume=56&rft.issue=1&rft.spage=16&rft.epage=63&rft.pages=16-63&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-05019-1&rft_dat=%3Cgale_proqu%3EA639118457%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471740952&rft_id=info:pmid/&rft_galeid=A639118457&rfr_iscdi=true