Reducing particle size of biodegradable nanomaterial for efficient curcumin loading
Periodic mesoporous organosilica (PMO) are well known as highly potential materials in biomedical applications. In this work, biodegradable PMO nanoparticles, named E4S, which was incorporated of redox-responsive tetrasulfide bonds, were successfully synthesized with particle size smaller than 50 nm...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2021-02, Vol.56 (5), p.3713-3722 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3722 |
---|---|
container_issue | 5 |
container_start_page | 3713 |
container_title | Journal of materials science |
container_volume | 56 |
creator | Mai, Ngoc Xuan Dat Dang, Y Thi Ta, Hanh Kieu Thi Bae, Jong-Seong Park, Sungkyun Phan, Bach Thang Tamanoi, Fuyuhiko Doan, Tan Le Hoang |
description | Periodic mesoporous organosilica (PMO) are well known as highly potential materials in biomedical applications. In this work, biodegradable PMO nanoparticles, named E4S, which was incorporated of redox-responsive tetrasulfide bonds, were successfully synthesized with particle size smaller than 50 nm. We study the effect of synthetic conditions, especially the amounts of an alkaline catalyst on particle size and porosity of the nanomaterial. X-ray photoelectron spectroscopy, scanning electron microscope, N
2
isotherm sorption, Fourier transform infrared (FT-IR) and thermogravimetric analysis techniques were applied to define structural characteristics. Curcumin, a highly hydrophobic, bioactive natural product, was chosen for loading onto the porous structure of E4S. The material exhibited high efficiency for curcumin loading with the capacity up to 1984 mg g
−1
. According to the loading investigation of the nanoparticles with various sizes, it is noted that the smallest particle shows the highest curcumin loading capacity which may result from small particle sizes and high specific surface area. These results suggest that ethane-tetrasulfide BPMO could be used as an excellent nanomaterial for curcumin loading.
Graphical abstract |
doi_str_mv | 10.1007/s10853-020-05504-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2471728973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642035837</galeid><sourcerecordid>A642035837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-392733b9b82d8322f3d9d82042906028bfd1e235658350123edf3ee03f8d6a883</originalsourceid><addsrcrecordid>eNp9kcGK1TAUhoMoeL36Aq4Krlx0PDlp2nQ5DDoODAgzug5pclIy9CbXpAX16c1YQWYjWQQO33f-Az9jbzlccIDhQ-GgpGgBoQUpoWuHZ-zA5SDaToF4zg4AiC12PX_JXpXyAAByQH5g93fkNhvi3JxNXoNdqCnhFzXJN1NIjuZsnJnqNJqYTmalHMzS-JQb8j7YQHFt7JbtdgqxWZJxddVr9sKbpdCbv_-Rffv08evV5_b2y_XN1eVta7tRrq0YcRBiGieFTglEL9zoFEKHI_SAavKOEwrZSyUkcBTkvCAC4ZXrjVLiyN7te885fd-orPohbTnWSI3dwAdUYw04soudms1COkSf1mxsfY5OwaZIPtT5Zd8hiJo0VOH9E6EyK_1YZ7OVom_u756yuLM2p1IyeX3O4WTyT81BPzaj92Z0bUb_aUY_SmKXSoXjTPnf3f-xfgP2vY7q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471728973</pqid></control><display><type>article</type><title>Reducing particle size of biodegradable nanomaterial for efficient curcumin loading</title><source>SpringerNature Journals</source><creator>Mai, Ngoc Xuan Dat ; Dang, Y Thi ; Ta, Hanh Kieu Thi ; Bae, Jong-Seong ; Park, Sungkyun ; Phan, Bach Thang ; Tamanoi, Fuyuhiko ; Doan, Tan Le Hoang</creator><creatorcontrib>Mai, Ngoc Xuan Dat ; Dang, Y Thi ; Ta, Hanh Kieu Thi ; Bae, Jong-Seong ; Park, Sungkyun ; Phan, Bach Thang ; Tamanoi, Fuyuhiko ; Doan, Tan Le Hoang</creatorcontrib><description>Periodic mesoporous organosilica (PMO) are well known as highly potential materials in biomedical applications. In this work, biodegradable PMO nanoparticles, named E4S, which was incorporated of redox-responsive tetrasulfide bonds, were successfully synthesized with particle size smaller than 50 nm. We study the effect of synthetic conditions, especially the amounts of an alkaline catalyst on particle size and porosity of the nanomaterial. X-ray photoelectron spectroscopy, scanning electron microscope, N
2
isotherm sorption, Fourier transform infrared (FT-IR) and thermogravimetric analysis techniques were applied to define structural characteristics. Curcumin, a highly hydrophobic, bioactive natural product, was chosen for loading onto the porous structure of E4S. The material exhibited high efficiency for curcumin loading with the capacity up to 1984 mg g
−1
. According to the loading investigation of the nanoparticles with various sizes, it is noted that the smallest particle shows the highest curcumin loading capacity which may result from small particle sizes and high specific surface area. These results suggest that ethane-tetrasulfide BPMO could be used as an excellent nanomaterial for curcumin loading.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-05504-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biodegradability ; Biomedical materials ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Comminution ; Crystallography and Scattering Methods ; Ethane ; Fourier transforms ; Infrared analysis ; Materials Science ; Nanomaterials ; Nanoparticles ; Natural products ; Particle size ; Photoelectrons ; Polymer Sciences ; Porosity ; Solid Mechanics ; Thermogravimetric analysis ; X-ray spectroscopy</subject><ispartof>Journal of materials science, 2021-02, Vol.56 (5), p.3713-3722</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-392733b9b82d8322f3d9d82042906028bfd1e235658350123edf3ee03f8d6a883</citedby><cites>FETCH-LOGICAL-c495t-392733b9b82d8322f3d9d82042906028bfd1e235658350123edf3ee03f8d6a883</cites><orcidid>0000-0001-6312-9571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-05504-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-05504-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mai, Ngoc Xuan Dat</creatorcontrib><creatorcontrib>Dang, Y Thi</creatorcontrib><creatorcontrib>Ta, Hanh Kieu Thi</creatorcontrib><creatorcontrib>Bae, Jong-Seong</creatorcontrib><creatorcontrib>Park, Sungkyun</creatorcontrib><creatorcontrib>Phan, Bach Thang</creatorcontrib><creatorcontrib>Tamanoi, Fuyuhiko</creatorcontrib><creatorcontrib>Doan, Tan Le Hoang</creatorcontrib><title>Reducing particle size of biodegradable nanomaterial for efficient curcumin loading</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Periodic mesoporous organosilica (PMO) are well known as highly potential materials in biomedical applications. In this work, biodegradable PMO nanoparticles, named E4S, which was incorporated of redox-responsive tetrasulfide bonds, were successfully synthesized with particle size smaller than 50 nm. We study the effect of synthetic conditions, especially the amounts of an alkaline catalyst on particle size and porosity of the nanomaterial. X-ray photoelectron spectroscopy, scanning electron microscope, N
2
isotherm sorption, Fourier transform infrared (FT-IR) and thermogravimetric analysis techniques were applied to define structural characteristics. Curcumin, a highly hydrophobic, bioactive natural product, was chosen for loading onto the porous structure of E4S. The material exhibited high efficiency for curcumin loading with the capacity up to 1984 mg g
−1
. According to the loading investigation of the nanoparticles with various sizes, it is noted that the smallest particle shows the highest curcumin loading capacity which may result from small particle sizes and high specific surface area. These results suggest that ethane-tetrasulfide BPMO could be used as an excellent nanomaterial for curcumin loading.
Graphical abstract</description><subject>Biodegradability</subject><subject>Biomedical materials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Comminution</subject><subject>Crystallography and Scattering Methods</subject><subject>Ethane</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Natural products</subject><subject>Particle size</subject><subject>Photoelectrons</subject><subject>Polymer Sciences</subject><subject>Porosity</subject><subject>Solid Mechanics</subject><subject>Thermogravimetric analysis</subject><subject>X-ray spectroscopy</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kcGK1TAUhoMoeL36Aq4Krlx0PDlp2nQ5DDoODAgzug5pclIy9CbXpAX16c1YQWYjWQQO33f-Az9jbzlccIDhQ-GgpGgBoQUpoWuHZ-zA5SDaToF4zg4AiC12PX_JXpXyAAByQH5g93fkNhvi3JxNXoNdqCnhFzXJN1NIjuZsnJnqNJqYTmalHMzS-JQb8j7YQHFt7JbtdgqxWZJxddVr9sKbpdCbv_-Rffv08evV5_b2y_XN1eVta7tRrq0YcRBiGieFTglEL9zoFEKHI_SAavKOEwrZSyUkcBTkvCAC4ZXrjVLiyN7te885fd-orPohbTnWSI3dwAdUYw04soudms1COkSf1mxsfY5OwaZIPtT5Zd8hiJo0VOH9E6EyK_1YZ7OVom_u756yuLM2p1IyeX3O4WTyT81BPzaj92Z0bUb_aUY_SmKXSoXjTPnf3f-xfgP2vY7q</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Mai, Ngoc Xuan Dat</creator><creator>Dang, Y Thi</creator><creator>Ta, Hanh Kieu Thi</creator><creator>Bae, Jong-Seong</creator><creator>Park, Sungkyun</creator><creator>Phan, Bach Thang</creator><creator>Tamanoi, Fuyuhiko</creator><creator>Doan, Tan Le Hoang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6312-9571</orcidid></search><sort><creationdate>20210201</creationdate><title>Reducing particle size of biodegradable nanomaterial for efficient curcumin loading</title><author>Mai, Ngoc Xuan Dat ; Dang, Y Thi ; Ta, Hanh Kieu Thi ; Bae, Jong-Seong ; Park, Sungkyun ; Phan, Bach Thang ; Tamanoi, Fuyuhiko ; Doan, Tan Le Hoang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-392733b9b82d8322f3d9d82042906028bfd1e235658350123edf3ee03f8d6a883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biodegradability</topic><topic>Biomedical materials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Comminution</topic><topic>Crystallography and Scattering Methods</topic><topic>Ethane</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Natural products</topic><topic>Particle size</topic><topic>Photoelectrons</topic><topic>Polymer Sciences</topic><topic>Porosity</topic><topic>Solid Mechanics</topic><topic>Thermogravimetric analysis</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mai, Ngoc Xuan Dat</creatorcontrib><creatorcontrib>Dang, Y Thi</creatorcontrib><creatorcontrib>Ta, Hanh Kieu Thi</creatorcontrib><creatorcontrib>Bae, Jong-Seong</creatorcontrib><creatorcontrib>Park, Sungkyun</creatorcontrib><creatorcontrib>Phan, Bach Thang</creatorcontrib><creatorcontrib>Tamanoi, Fuyuhiko</creatorcontrib><creatorcontrib>Doan, Tan Le Hoang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mai, Ngoc Xuan Dat</au><au>Dang, Y Thi</au><au>Ta, Hanh Kieu Thi</au><au>Bae, Jong-Seong</au><au>Park, Sungkyun</au><au>Phan, Bach Thang</au><au>Tamanoi, Fuyuhiko</au><au>Doan, Tan Le Hoang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing particle size of biodegradable nanomaterial for efficient curcumin loading</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>56</volume><issue>5</issue><spage>3713</spage><epage>3722</epage><pages>3713-3722</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Periodic mesoporous organosilica (PMO) are well known as highly potential materials in biomedical applications. In this work, biodegradable PMO nanoparticles, named E4S, which was incorporated of redox-responsive tetrasulfide bonds, were successfully synthesized with particle size smaller than 50 nm. We study the effect of synthetic conditions, especially the amounts of an alkaline catalyst on particle size and porosity of the nanomaterial. X-ray photoelectron spectroscopy, scanning electron microscope, N
2
isotherm sorption, Fourier transform infrared (FT-IR) and thermogravimetric analysis techniques were applied to define structural characteristics. Curcumin, a highly hydrophobic, bioactive natural product, was chosen for loading onto the porous structure of E4S. The material exhibited high efficiency for curcumin loading with the capacity up to 1984 mg g
−1
. According to the loading investigation of the nanoparticles with various sizes, it is noted that the smallest particle shows the highest curcumin loading capacity which may result from small particle sizes and high specific surface area. These results suggest that ethane-tetrasulfide BPMO could be used as an excellent nanomaterial for curcumin loading.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-05504-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6312-9571</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2021-02, Vol.56 (5), p.3713-3722 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2471728973 |
source | SpringerNature Journals |
subjects | Biodegradability Biomedical materials Characterization and Evaluation of Materials Chemical Routes to Materials Chemistry and Materials Science Classical Mechanics Comminution Crystallography and Scattering Methods Ethane Fourier transforms Infrared analysis Materials Science Nanomaterials Nanoparticles Natural products Particle size Photoelectrons Polymer Sciences Porosity Solid Mechanics Thermogravimetric analysis X-ray spectroscopy |
title | Reducing particle size of biodegradable nanomaterial for efficient curcumin loading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20particle%20size%20of%20biodegradable%20nanomaterial%20for%20efficient%20curcumin%20loading&rft.jtitle=Journal%20of%20materials%20science&rft.au=Mai,%20Ngoc%20Xuan%20Dat&rft.date=2021-02-01&rft.volume=56&rft.issue=5&rft.spage=3713&rft.epage=3722&rft.pages=3713-3722&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-05504-7&rft_dat=%3Cgale_proqu%3EA642035837%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471728973&rft_id=info:pmid/&rft_galeid=A642035837&rfr_iscdi=true |