Reducing particle size of biodegradable nanomaterial for efficient curcumin loading

Periodic mesoporous organosilica (PMO) are well known as highly potential materials in biomedical applications. In this work, biodegradable PMO nanoparticles, named E4S, which was incorporated of redox-responsive tetrasulfide bonds, were successfully synthesized with particle size smaller than 50 nm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021-02, Vol.56 (5), p.3713-3722
Hauptverfasser: Mai, Ngoc Xuan Dat, Dang, Y Thi, Ta, Hanh Kieu Thi, Bae, Jong-Seong, Park, Sungkyun, Phan, Bach Thang, Tamanoi, Fuyuhiko, Doan, Tan Le Hoang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3722
container_issue 5
container_start_page 3713
container_title Journal of materials science
container_volume 56
creator Mai, Ngoc Xuan Dat
Dang, Y Thi
Ta, Hanh Kieu Thi
Bae, Jong-Seong
Park, Sungkyun
Phan, Bach Thang
Tamanoi, Fuyuhiko
Doan, Tan Le Hoang
description Periodic mesoporous organosilica (PMO) are well known as highly potential materials in biomedical applications. In this work, biodegradable PMO nanoparticles, named E4S, which was incorporated of redox-responsive tetrasulfide bonds, were successfully synthesized with particle size smaller than 50 nm. We study the effect of synthetic conditions, especially the amounts of an alkaline catalyst on particle size and porosity of the nanomaterial. X-ray photoelectron spectroscopy, scanning electron microscope, N 2 isotherm sorption, Fourier transform infrared (FT-IR) and thermogravimetric analysis techniques were applied to define structural characteristics. Curcumin, a highly hydrophobic, bioactive natural product, was chosen for loading onto the porous structure of E4S. The material exhibited high efficiency for curcumin loading with the capacity up to 1984 mg g −1 . According to the loading investigation of the nanoparticles with various sizes, it is noted that the smallest particle shows the highest curcumin loading capacity which may result from small particle sizes and high specific surface area. These results suggest that ethane-tetrasulfide BPMO could be used as an excellent nanomaterial for curcumin loading. Graphical abstract
doi_str_mv 10.1007/s10853-020-05504-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2471728973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642035837</galeid><sourcerecordid>A642035837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-392733b9b82d8322f3d9d82042906028bfd1e235658350123edf3ee03f8d6a883</originalsourceid><addsrcrecordid>eNp9kcGK1TAUhoMoeL36Aq4Krlx0PDlp2nQ5DDoODAgzug5pclIy9CbXpAX16c1YQWYjWQQO33f-Az9jbzlccIDhQ-GgpGgBoQUpoWuHZ-zA5SDaToF4zg4AiC12PX_JXpXyAAByQH5g93fkNhvi3JxNXoNdqCnhFzXJN1NIjuZsnJnqNJqYTmalHMzS-JQb8j7YQHFt7JbtdgqxWZJxddVr9sKbpdCbv_-Rffv08evV5_b2y_XN1eVta7tRrq0YcRBiGieFTglEL9zoFEKHI_SAavKOEwrZSyUkcBTkvCAC4ZXrjVLiyN7te885fd-orPohbTnWSI3dwAdUYw04soudms1COkSf1mxsfY5OwaZIPtT5Zd8hiJo0VOH9E6EyK_1YZ7OVom_u756yuLM2p1IyeX3O4WTyT81BPzaj92Z0bUb_aUY_SmKXSoXjTPnf3f-xfgP2vY7q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471728973</pqid></control><display><type>article</type><title>Reducing particle size of biodegradable nanomaterial for efficient curcumin loading</title><source>SpringerNature Journals</source><creator>Mai, Ngoc Xuan Dat ; Dang, Y Thi ; Ta, Hanh Kieu Thi ; Bae, Jong-Seong ; Park, Sungkyun ; Phan, Bach Thang ; Tamanoi, Fuyuhiko ; Doan, Tan Le Hoang</creator><creatorcontrib>Mai, Ngoc Xuan Dat ; Dang, Y Thi ; Ta, Hanh Kieu Thi ; Bae, Jong-Seong ; Park, Sungkyun ; Phan, Bach Thang ; Tamanoi, Fuyuhiko ; Doan, Tan Le Hoang</creatorcontrib><description>Periodic mesoporous organosilica (PMO) are well known as highly potential materials in biomedical applications. In this work, biodegradable PMO nanoparticles, named E4S, which was incorporated of redox-responsive tetrasulfide bonds, were successfully synthesized with particle size smaller than 50 nm. We study the effect of synthetic conditions, especially the amounts of an alkaline catalyst on particle size and porosity of the nanomaterial. X-ray photoelectron spectroscopy, scanning electron microscope, N 2 isotherm sorption, Fourier transform infrared (FT-IR) and thermogravimetric analysis techniques were applied to define structural characteristics. Curcumin, a highly hydrophobic, bioactive natural product, was chosen for loading onto the porous structure of E4S. The material exhibited high efficiency for curcumin loading with the capacity up to 1984 mg g −1 . According to the loading investigation of the nanoparticles with various sizes, it is noted that the smallest particle shows the highest curcumin loading capacity which may result from small particle sizes and high specific surface area. These results suggest that ethane-tetrasulfide BPMO could be used as an excellent nanomaterial for curcumin loading. Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-05504-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biodegradability ; Biomedical materials ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Comminution ; Crystallography and Scattering Methods ; Ethane ; Fourier transforms ; Infrared analysis ; Materials Science ; Nanomaterials ; Nanoparticles ; Natural products ; Particle size ; Photoelectrons ; Polymer Sciences ; Porosity ; Solid Mechanics ; Thermogravimetric analysis ; X-ray spectroscopy</subject><ispartof>Journal of materials science, 2021-02, Vol.56 (5), p.3713-3722</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-392733b9b82d8322f3d9d82042906028bfd1e235658350123edf3ee03f8d6a883</citedby><cites>FETCH-LOGICAL-c495t-392733b9b82d8322f3d9d82042906028bfd1e235658350123edf3ee03f8d6a883</cites><orcidid>0000-0001-6312-9571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-05504-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-05504-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mai, Ngoc Xuan Dat</creatorcontrib><creatorcontrib>Dang, Y Thi</creatorcontrib><creatorcontrib>Ta, Hanh Kieu Thi</creatorcontrib><creatorcontrib>Bae, Jong-Seong</creatorcontrib><creatorcontrib>Park, Sungkyun</creatorcontrib><creatorcontrib>Phan, Bach Thang</creatorcontrib><creatorcontrib>Tamanoi, Fuyuhiko</creatorcontrib><creatorcontrib>Doan, Tan Le Hoang</creatorcontrib><title>Reducing particle size of biodegradable nanomaterial for efficient curcumin loading</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Periodic mesoporous organosilica (PMO) are well known as highly potential materials in biomedical applications. In this work, biodegradable PMO nanoparticles, named E4S, which was incorporated of redox-responsive tetrasulfide bonds, were successfully synthesized with particle size smaller than 50 nm. We study the effect of synthetic conditions, especially the amounts of an alkaline catalyst on particle size and porosity of the nanomaterial. X-ray photoelectron spectroscopy, scanning electron microscope, N 2 isotherm sorption, Fourier transform infrared (FT-IR) and thermogravimetric analysis techniques were applied to define structural characteristics. Curcumin, a highly hydrophobic, bioactive natural product, was chosen for loading onto the porous structure of E4S. The material exhibited high efficiency for curcumin loading with the capacity up to 1984 mg g −1 . According to the loading investigation of the nanoparticles with various sizes, it is noted that the smallest particle shows the highest curcumin loading capacity which may result from small particle sizes and high specific surface area. These results suggest that ethane-tetrasulfide BPMO could be used as an excellent nanomaterial for curcumin loading. Graphical abstract</description><subject>Biodegradability</subject><subject>Biomedical materials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Comminution</subject><subject>Crystallography and Scattering Methods</subject><subject>Ethane</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Natural products</subject><subject>Particle size</subject><subject>Photoelectrons</subject><subject>Polymer Sciences</subject><subject>Porosity</subject><subject>Solid Mechanics</subject><subject>Thermogravimetric analysis</subject><subject>X-ray spectroscopy</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kcGK1TAUhoMoeL36Aq4Krlx0PDlp2nQ5DDoODAgzug5pclIy9CbXpAX16c1YQWYjWQQO33f-Az9jbzlccIDhQ-GgpGgBoQUpoWuHZ-zA5SDaToF4zg4AiC12PX_JXpXyAAByQH5g93fkNhvi3JxNXoNdqCnhFzXJN1NIjuZsnJnqNJqYTmalHMzS-JQb8j7YQHFt7JbtdgqxWZJxddVr9sKbpdCbv_-Rffv08evV5_b2y_XN1eVta7tRrq0YcRBiGieFTglEL9zoFEKHI_SAavKOEwrZSyUkcBTkvCAC4ZXrjVLiyN7te885fd-orPohbTnWSI3dwAdUYw04soudms1COkSf1mxsfY5OwaZIPtT5Zd8hiJo0VOH9E6EyK_1YZ7OVom_u756yuLM2p1IyeX3O4WTyT81BPzaj92Z0bUb_aUY_SmKXSoXjTPnf3f-xfgP2vY7q</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Mai, Ngoc Xuan Dat</creator><creator>Dang, Y Thi</creator><creator>Ta, Hanh Kieu Thi</creator><creator>Bae, Jong-Seong</creator><creator>Park, Sungkyun</creator><creator>Phan, Bach Thang</creator><creator>Tamanoi, Fuyuhiko</creator><creator>Doan, Tan Le Hoang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6312-9571</orcidid></search><sort><creationdate>20210201</creationdate><title>Reducing particle size of biodegradable nanomaterial for efficient curcumin loading</title><author>Mai, Ngoc Xuan Dat ; Dang, Y Thi ; Ta, Hanh Kieu Thi ; Bae, Jong-Seong ; Park, Sungkyun ; Phan, Bach Thang ; Tamanoi, Fuyuhiko ; Doan, Tan Le Hoang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-392733b9b82d8322f3d9d82042906028bfd1e235658350123edf3ee03f8d6a883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biodegradability</topic><topic>Biomedical materials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Comminution</topic><topic>Crystallography and Scattering Methods</topic><topic>Ethane</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Natural products</topic><topic>Particle size</topic><topic>Photoelectrons</topic><topic>Polymer Sciences</topic><topic>Porosity</topic><topic>Solid Mechanics</topic><topic>Thermogravimetric analysis</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mai, Ngoc Xuan Dat</creatorcontrib><creatorcontrib>Dang, Y Thi</creatorcontrib><creatorcontrib>Ta, Hanh Kieu Thi</creatorcontrib><creatorcontrib>Bae, Jong-Seong</creatorcontrib><creatorcontrib>Park, Sungkyun</creatorcontrib><creatorcontrib>Phan, Bach Thang</creatorcontrib><creatorcontrib>Tamanoi, Fuyuhiko</creatorcontrib><creatorcontrib>Doan, Tan Le Hoang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mai, Ngoc Xuan Dat</au><au>Dang, Y Thi</au><au>Ta, Hanh Kieu Thi</au><au>Bae, Jong-Seong</au><au>Park, Sungkyun</au><au>Phan, Bach Thang</au><au>Tamanoi, Fuyuhiko</au><au>Doan, Tan Le Hoang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing particle size of biodegradable nanomaterial for efficient curcumin loading</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>56</volume><issue>5</issue><spage>3713</spage><epage>3722</epage><pages>3713-3722</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Periodic mesoporous organosilica (PMO) are well known as highly potential materials in biomedical applications. In this work, biodegradable PMO nanoparticles, named E4S, which was incorporated of redox-responsive tetrasulfide bonds, were successfully synthesized with particle size smaller than 50 nm. We study the effect of synthetic conditions, especially the amounts of an alkaline catalyst on particle size and porosity of the nanomaterial. X-ray photoelectron spectroscopy, scanning electron microscope, N 2 isotherm sorption, Fourier transform infrared (FT-IR) and thermogravimetric analysis techniques were applied to define structural characteristics. Curcumin, a highly hydrophobic, bioactive natural product, was chosen for loading onto the porous structure of E4S. The material exhibited high efficiency for curcumin loading with the capacity up to 1984 mg g −1 . According to the loading investigation of the nanoparticles with various sizes, it is noted that the smallest particle shows the highest curcumin loading capacity which may result from small particle sizes and high specific surface area. These results suggest that ethane-tetrasulfide BPMO could be used as an excellent nanomaterial for curcumin loading. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-05504-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6312-9571</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2021-02, Vol.56 (5), p.3713-3722
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2471728973
source SpringerNature Journals
subjects Biodegradability
Biomedical materials
Characterization and Evaluation of Materials
Chemical Routes to Materials
Chemistry and Materials Science
Classical Mechanics
Comminution
Crystallography and Scattering Methods
Ethane
Fourier transforms
Infrared analysis
Materials Science
Nanomaterials
Nanoparticles
Natural products
Particle size
Photoelectrons
Polymer Sciences
Porosity
Solid Mechanics
Thermogravimetric analysis
X-ray spectroscopy
title Reducing particle size of biodegradable nanomaterial for efficient curcumin loading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20particle%20size%20of%20biodegradable%20nanomaterial%20for%20efficient%20curcumin%20loading&rft.jtitle=Journal%20of%20materials%20science&rft.au=Mai,%20Ngoc%20Xuan%20Dat&rft.date=2021-02-01&rft.volume=56&rft.issue=5&rft.spage=3713&rft.epage=3722&rft.pages=3713-3722&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-05504-7&rft_dat=%3Cgale_proqu%3EA642035837%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471728973&rft_id=info:pmid/&rft_galeid=A642035837&rfr_iscdi=true