Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells
Bone-mimetic highly porous Mg-substituted calcium phosphate scaffolds, composed of hydroxyapatite (HAP) and whitlockite (WH), were synthesized by hydrothermal method at 200 °C, using calcium carbonate skeletons of cuttlefish bone, ammonium dihydrogenphosphate (NH 4 H 2 PO 4 ) and magnesium chloride...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2021-02, Vol.56 (5), p.3947-3969 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3969 |
---|---|
container_issue | 5 |
container_start_page | 3947 |
container_title | Journal of materials science |
container_volume | 56 |
creator | Bauer, Leonard Antunović, Maja Rogina, Anamarija Ivanković, Marica Ivanković, Hrvoje |
description | Bone-mimetic highly porous Mg-substituted calcium phosphate scaffolds, composed of hydroxyapatite (HAP) and whitlockite (WH), were synthesized by hydrothermal method at 200 °C, using calcium carbonate skeletons of cuttlefish bone, ammonium dihydrogenphosphate (NH
4
H
2
PO
4
) and magnesium chloride hexahydrate (MgCl
2
× 6H
2
O) or magnesium perchlorate (Mg(ClO
4
)
2
) as reagents. The effect of Mg content on the compositional and morphological properties of scaffolds was studied by means of X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy (SEM) with energy-dispersive X-ray analysis. Structural refinements performed by Rietveld method indicated that Mg
2+
ions were preferentially incorporated into the WH phase. SEM images of all prepared scaffolds showed that the interconnected structure of the cuttlefish bone was completely maintained after the hydrothermal synthesis. Results of compression tests showed a positive impact of the whitlockite phase on the mechanical properties of scaffolds. Human mesenchymal stem cells (hMSCs) were cultured on scaffolds in osteogenic medium for 21 days. Immunohistochemical staining showed that Mg-CaP scaffolds with the HAP:WH wt ratio of 90:10 and 70:30 exhibited higher expression of collagen type I and osteocalcin than pure HAP scaffold. Calcium deposition was confirmed by Alizarin Red staining. Positive effect of Mg
2+
ions on the differentiation of hMSCs on porous 3D scaffolds was also confirmed by reverse transcription-quantitative polymerase chain reaction analysis.
Graphical abstract |
doi_str_mv | 10.1007/s10853-020-05489-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2471728548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642035833</galeid><sourcerecordid>A642035833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-2638e5e1d3cad07b9475d19b3e20e4eb2ed38c47a2c09c8f13fe06e7f20b7bb03</originalsourceid><addsrcrecordid>eNp9kd1q3DAQhU1podu0L9ArQa8KVTL68crbuzT0JxAoJO21kOXxWqktuZJMsn2EPHWUbCEslKILjQ7fGTFzquotg2MGoE4Sg6YWFDhQqGWzoeJZtWK1ElQ2IJ5XKwDOKZdr9rJ6ldI1ANSKs1V19yl4pJObMDtL5hDDksiw62K43ZnZZJfx5GZweQz2V6lJsqbvw9ilj2SOOJtYkOA_EDuU0maM7s-jQozviPNFKGp5J3Lj8kCGZTKeTJjQ22E3mZGkjBOxOI7pdfWiN2PCN3_vo-rnl88_zr7Ri-9fz89OL6iVtcqUr0WDNbJOWNOBajdS1R3btAI5oMSWYycaK5XhFja26ZnoEdaoeg6talsQR9W7fd85ht8LpqyvwxJ9-VJzqZjiTdngE7U1I2rn-5DLKJNLVp-uJQdRN0IU6vgfVDkdTs6W1fau6AeG9weGwmS8zVuzpKTPry4PWb5nbQwpRez1HN1k4k4z0A-x633susSuH2PXDyaxN6UC-y3Gp-n-47oH5EyyDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471728548</pqid></control><display><type>article</type><title>Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bauer, Leonard ; Antunović, Maja ; Rogina, Anamarija ; Ivanković, Marica ; Ivanković, Hrvoje</creator><creatorcontrib>Bauer, Leonard ; Antunović, Maja ; Rogina, Anamarija ; Ivanković, Marica ; Ivanković, Hrvoje</creatorcontrib><description>Bone-mimetic highly porous Mg-substituted calcium phosphate scaffolds, composed of hydroxyapatite (HAP) and whitlockite (WH), were synthesized by hydrothermal method at 200 °C, using calcium carbonate skeletons of cuttlefish bone, ammonium dihydrogenphosphate (NH
4
H
2
PO
4
) and magnesium chloride hexahydrate (MgCl
2
× 6H
2
O) or magnesium perchlorate (Mg(ClO
4
)
2
) as reagents. The effect of Mg content on the compositional and morphological properties of scaffolds was studied by means of X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy (SEM) with energy-dispersive X-ray analysis. Structural refinements performed by Rietveld method indicated that Mg
2+
ions were preferentially incorporated into the WH phase. SEM images of all prepared scaffolds showed that the interconnected structure of the cuttlefish bone was completely maintained after the hydrothermal synthesis. Results of compression tests showed a positive impact of the whitlockite phase on the mechanical properties of scaffolds. Human mesenchymal stem cells (hMSCs) were cultured on scaffolds in osteogenic medium for 21 days. Immunohistochemical staining showed that Mg-CaP scaffolds with the HAP:WH wt ratio of 90:10 and 70:30 exhibited higher expression of collagen type I and osteocalcin than pure HAP scaffold. Calcium deposition was confirmed by Alizarin Red staining. Positive effect of Mg
2+
ions on the differentiation of hMSCs on porous 3D scaffolds was also confirmed by reverse transcription-quantitative polymerase chain reaction analysis.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-05489-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alizarin ; Ammonium dihydrogen phosphate ; Analysis ; Biomedical materials ; Calcium carbonate ; Calcium phosphate ; Calcium phosphates ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Collagen ; Compression tests ; Crystallography and Scattering Methods ; Diffraction ; Fourier transforms ; Hydroxyapatite ; Immunohistochemistry ; Infrared analysis ; Infrared spectroscopy ; Magnesium chloride ; Magnesium compounds ; Magnesium perchlorates ; Materials for Life Sciences ; Materials Science ; Mechanical properties ; Polymer Sciences ; Polymerase chain reaction ; Reagents ; Rietveld method ; Scaffolds ; Scanning electron microscopy ; Solid Mechanics ; Staining ; Stem cells ; Thermogravimetric analysis ; X ray analysis ; X-rays</subject><ispartof>Journal of materials science, 2021-02, Vol.56 (5), p.3947-3969</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-2638e5e1d3cad07b9475d19b3e20e4eb2ed38c47a2c09c8f13fe06e7f20b7bb03</citedby><cites>FETCH-LOGICAL-c457t-2638e5e1d3cad07b9475d19b3e20e4eb2ed38c47a2c09c8f13fe06e7f20b7bb03</cites><orcidid>0000-0001-7467-8381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-020-05489-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-020-05489-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bauer, Leonard</creatorcontrib><creatorcontrib>Antunović, Maja</creatorcontrib><creatorcontrib>Rogina, Anamarija</creatorcontrib><creatorcontrib>Ivanković, Marica</creatorcontrib><creatorcontrib>Ivanković, Hrvoje</creatorcontrib><title>Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Bone-mimetic highly porous Mg-substituted calcium phosphate scaffolds, composed of hydroxyapatite (HAP) and whitlockite (WH), were synthesized by hydrothermal method at 200 °C, using calcium carbonate skeletons of cuttlefish bone, ammonium dihydrogenphosphate (NH
4
H
2
PO
4
) and magnesium chloride hexahydrate (MgCl
2
× 6H
2
O) or magnesium perchlorate (Mg(ClO
4
)
2
) as reagents. The effect of Mg content on the compositional and morphological properties of scaffolds was studied by means of X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy (SEM) with energy-dispersive X-ray analysis. Structural refinements performed by Rietveld method indicated that Mg
2+
ions were preferentially incorporated into the WH phase. SEM images of all prepared scaffolds showed that the interconnected structure of the cuttlefish bone was completely maintained after the hydrothermal synthesis. Results of compression tests showed a positive impact of the whitlockite phase on the mechanical properties of scaffolds. Human mesenchymal stem cells (hMSCs) were cultured on scaffolds in osteogenic medium for 21 days. Immunohistochemical staining showed that Mg-CaP scaffolds with the HAP:WH wt ratio of 90:10 and 70:30 exhibited higher expression of collagen type I and osteocalcin than pure HAP scaffold. Calcium deposition was confirmed by Alizarin Red staining. Positive effect of Mg
2+
ions on the differentiation of hMSCs on porous 3D scaffolds was also confirmed by reverse transcription-quantitative polymerase chain reaction analysis.
Graphical abstract</description><subject>Alizarin</subject><subject>Ammonium dihydrogen phosphate</subject><subject>Analysis</subject><subject>Biomedical materials</subject><subject>Calcium carbonate</subject><subject>Calcium phosphate</subject><subject>Calcium phosphates</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Collagen</subject><subject>Compression tests</subject><subject>Crystallography and Scattering Methods</subject><subject>Diffraction</subject><subject>Fourier transforms</subject><subject>Hydroxyapatite</subject><subject>Immunohistochemistry</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Magnesium chloride</subject><subject>Magnesium compounds</subject><subject>Magnesium perchlorates</subject><subject>Materials for Life Sciences</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Polymer Sciences</subject><subject>Polymerase chain reaction</subject><subject>Reagents</subject><subject>Rietveld method</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Solid Mechanics</subject><subject>Staining</subject><subject>Stem cells</subject><subject>Thermogravimetric analysis</subject><subject>X ray analysis</subject><subject>X-rays</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kd1q3DAQhU1podu0L9ArQa8KVTL68crbuzT0JxAoJO21kOXxWqktuZJMsn2EPHWUbCEslKILjQ7fGTFzquotg2MGoE4Sg6YWFDhQqGWzoeJZtWK1ElQ2IJ5XKwDOKZdr9rJ6ldI1ANSKs1V19yl4pJObMDtL5hDDksiw62K43ZnZZJfx5GZweQz2V6lJsqbvw9ilj2SOOJtYkOA_EDuU0maM7s-jQozviPNFKGp5J3Lj8kCGZTKeTJjQ22E3mZGkjBOxOI7pdfWiN2PCN3_vo-rnl88_zr7Ri-9fz89OL6iVtcqUr0WDNbJOWNOBajdS1R3btAI5oMSWYycaK5XhFja26ZnoEdaoeg6talsQR9W7fd85ht8LpqyvwxJ9-VJzqZjiTdngE7U1I2rn-5DLKJNLVp-uJQdRN0IU6vgfVDkdTs6W1fau6AeG9weGwmS8zVuzpKTPry4PWb5nbQwpRez1HN1k4k4z0A-x633susSuH2PXDyaxN6UC-y3Gp-n-47oH5EyyDQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Bauer, Leonard</creator><creator>Antunović, Maja</creator><creator>Rogina, Anamarija</creator><creator>Ivanković, Marica</creator><creator>Ivanković, Hrvoje</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7467-8381</orcidid></search><sort><creationdate>20210201</creationdate><title>Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells</title><author>Bauer, Leonard ; Antunović, Maja ; Rogina, Anamarija ; Ivanković, Marica ; Ivanković, Hrvoje</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-2638e5e1d3cad07b9475d19b3e20e4eb2ed38c47a2c09c8f13fe06e7f20b7bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alizarin</topic><topic>Ammonium dihydrogen phosphate</topic><topic>Analysis</topic><topic>Biomedical materials</topic><topic>Calcium carbonate</topic><topic>Calcium phosphate</topic><topic>Calcium phosphates</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Collagen</topic><topic>Compression tests</topic><topic>Crystallography and Scattering Methods</topic><topic>Diffraction</topic><topic>Fourier transforms</topic><topic>Hydroxyapatite</topic><topic>Immunohistochemistry</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Magnesium chloride</topic><topic>Magnesium compounds</topic><topic>Magnesium perchlorates</topic><topic>Materials for Life Sciences</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Polymer Sciences</topic><topic>Polymerase chain reaction</topic><topic>Reagents</topic><topic>Rietveld method</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Solid Mechanics</topic><topic>Staining</topic><topic>Stem cells</topic><topic>Thermogravimetric analysis</topic><topic>X ray analysis</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, Leonard</creatorcontrib><creatorcontrib>Antunović, Maja</creatorcontrib><creatorcontrib>Rogina, Anamarija</creatorcontrib><creatorcontrib>Ivanković, Marica</creatorcontrib><creatorcontrib>Ivanković, Hrvoje</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, Leonard</au><au>Antunović, Maja</au><au>Rogina, Anamarija</au><au>Ivanković, Marica</au><au>Ivanković, Hrvoje</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>56</volume><issue>5</issue><spage>3947</spage><epage>3969</epage><pages>3947-3969</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Bone-mimetic highly porous Mg-substituted calcium phosphate scaffolds, composed of hydroxyapatite (HAP) and whitlockite (WH), were synthesized by hydrothermal method at 200 °C, using calcium carbonate skeletons of cuttlefish bone, ammonium dihydrogenphosphate (NH
4
H
2
PO
4
) and magnesium chloride hexahydrate (MgCl
2
× 6H
2
O) or magnesium perchlorate (Mg(ClO
4
)
2
) as reagents. The effect of Mg content on the compositional and morphological properties of scaffolds was studied by means of X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy (SEM) with energy-dispersive X-ray analysis. Structural refinements performed by Rietveld method indicated that Mg
2+
ions were preferentially incorporated into the WH phase. SEM images of all prepared scaffolds showed that the interconnected structure of the cuttlefish bone was completely maintained after the hydrothermal synthesis. Results of compression tests showed a positive impact of the whitlockite phase on the mechanical properties of scaffolds. Human mesenchymal stem cells (hMSCs) were cultured on scaffolds in osteogenic medium for 21 days. Immunohistochemical staining showed that Mg-CaP scaffolds with the HAP:WH wt ratio of 90:10 and 70:30 exhibited higher expression of collagen type I and osteocalcin than pure HAP scaffold. Calcium deposition was confirmed by Alizarin Red staining. Positive effect of Mg
2+
ions on the differentiation of hMSCs on porous 3D scaffolds was also confirmed by reverse transcription-quantitative polymerase chain reaction analysis.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-05489-3</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7467-8381</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2021-02, Vol.56 (5), p.3947-3969 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2471728548 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alizarin Ammonium dihydrogen phosphate Analysis Biomedical materials Calcium carbonate Calcium phosphate Calcium phosphates Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Collagen Compression tests Crystallography and Scattering Methods Diffraction Fourier transforms Hydroxyapatite Immunohistochemistry Infrared analysis Infrared spectroscopy Magnesium chloride Magnesium compounds Magnesium perchlorates Materials for Life Sciences Materials Science Mechanical properties Polymer Sciences Polymerase chain reaction Reagents Rietveld method Scaffolds Scanning electron microscopy Solid Mechanics Staining Stem cells Thermogravimetric analysis X ray analysis X-rays |
title | Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone-mimetic%20porous%20hydroxyapatite/whitlockite%20scaffolds:%20preparation,%20characterization%20and%20interactions%20with%20human%20mesenchymal%20stem%20cells&rft.jtitle=Journal%20of%20materials%20science&rft.au=Bauer,%20Leonard&rft.date=2021-02-01&rft.volume=56&rft.issue=5&rft.spage=3947&rft.epage=3969&rft.pages=3947-3969&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-05489-3&rft_dat=%3Cgale_proqu%3EA642035833%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471728548&rft_id=info:pmid/&rft_galeid=A642035833&rfr_iscdi=true |